Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.23.4.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl (14.5 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.23.4-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.23.4-cp311-cp311-win32.whl (12.2 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.23.4-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.23.4-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.23.4-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.23.4-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl (13.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.23.4-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.23.4-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.23.4.tar.gz.

File metadata

  • Download URL: numpy-1.23.4.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4.tar.gz
Algorithm Hash digest
SHA256 ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c
MD5 d9ffd2c189633486ec246e61d4b947a0
BLAKE2b-256 648e9929b64e146d240507edaac2185cd5516f00b133be5b39250d253be25a64

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962
MD5 4ed382e55abc09c89a34db047692f6a6
BLAKE2b-256 952f0644216547beb6b6b6ffab234a4eceb5bcba8b4a859676898027f5d57d06

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810
MD5 63742f15e8bfa215c893136bbfc6444f
BLAKE2b-256 58ef1e2b870a3fd6d4b4a7f827eae56830dca8eef8a9efc4c3224a193f5b8905

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911
MD5 7cc095b18690071828b5b620d5ec40e7
BLAKE2b-256 26e5d00b9a9a89597a183257a7a316cce52e30ee705ac1c5a6de92766610ca8e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d
MD5 f529edf9b849d6e3b8cdb5120ae5b81a
BLAKE2b-256 eba6a3217b371207622bda002820da4f7e1332a96c8331dd4720c6d4be13a799

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.23.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79
MD5 637fe21b585228c9670d6e002bf8047f
BLAKE2b-256 2d6f484c508cd324e1b28b78156ed278e0de0153e1e83b4320e01f0697bc2645

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488
MD5 43aef7f984cd63d95c11fb74dd59ef0b
BLAKE2b-256 5a7b653f2c23240e80a560f3043bfe94f7d3804badf969b89273d8ab141133d9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0
MD5 b3c77344274f91514f728a454fd471fa
BLAKE2b-256 ec8381bcb0adeca52bffe6bf4b7c0a3f3d80a1d541f79f46fc5b12e6e997ddbe

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f
MD5 11ef4b7dfdaa37604cb881f3ca4459db
BLAKE2b-256 04d412493d1ed7d6bd5a29016eea021a32011aef266d23a9a4fdefd5ad520eed

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db
MD5 27445a9c85977cb8efa682a4b993347f
BLAKE2b-256 380a3c2524efc072cae26fb1055137f7794434e779b789b5b38671b99536328b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329
MD5 21c8e5fdfba2ff953e446189379cf0c9
BLAKE2b-256 b2f2fb29a463abacb29fa03dfb548d463f77d5d0be887664a3d570556247767a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.23.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd
MD5 44cc8bb112ca737520cf986fff92dfb0
BLAKE2b-256 a708e776ca1cc170ead24149dd1f8f4646628c94e70612f5fed74e9543f063fd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3
MD5 e2b086ca2229209f2f996c2f9a38bf9c
BLAKE2b-256 0c8378ae18fffc185d0d57097610d5a97473ef11dbdca95f16739ee96b158087

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71
MD5 b3ff0878de205f56c38fd7dcab80081f
BLAKE2b-256 0f9efc7e8c4f98acb3be0bf32e16a0412bdbbb6a10292ba68061e46158c865b4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f
MD5 c3cae63394db6c82fd2cb5700fc5917d
BLAKE2b-256 8ed7fe76e876a139c5f3f7c7bb2695ec2136bf94d9748433d9028ef0e2f58843

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2
MD5 90a3d95982490cfeeef22c0f7cbd874f
BLAKE2b-256 0708417eabd93635695e69a18a336401b306da504dec032d537dbdc76577a569

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e
MD5 8291dd66ef5451b4db2da55c21535757
BLAKE2b-256 af74c02ece94ef88bed0a7f266959fd9bb2c97140345bc792f281b7db390eea9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.23.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef
MD5 76144e575a3c3863ea22e03cdf022d8a
BLAKE2b-256 c9ea9222b4400b8604d4dd097e26a6e33f4a72d3c610902c3c0fe2182b51fea9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0
MD5 6301298a67999657a0878b64eeed09f2
BLAKE2b-256 9249127e40f3f468a9bbce1fe69e97d0f0db524621960e0adc51a977298eb49c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735
MD5 10aa210311fcd19a03f6c5495824a306
BLAKE2b-256 c714e35de6ce343a1226e4f838659f093f124ebaf2682c6f12ce3253a58f46bd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7
MD5 2e005bedf129ce8bafa6f550537f3740
BLAKE2b-256 853a18da9e6aa629311e97ef208e183e1bacd049c87378dfdc9c299c8a6406e1

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894
MD5 4cf0a6007abe42564c7380dbf92a26ce
BLAKE2b-256 074cbd58f481de1f0706ea6a46d4fb056e047f488a2876416b04ad085892bce1

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8
MD5 eac810d6bc43830bf151ea55cd0ded93
BLAKE2b-256 a923646b2bb081b25e8c6e2495fc1ddcea2ad89b5fdff194a9d1e8eb55cc1a6d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.23.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba
MD5 a318978f51fb80a17c2381e39194e906
BLAKE2b-256 3480d9b0d68ca6ce1423953d3ac5942f9110b8917c009c562a86d18d7db8fe02

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68
MD5 da71f34a4df0b98e4d9e17906dd57b07
BLAKE2b-256 56df2f6016171ebce9875e7de0292a2131bea86e0340607a313a04b332d35c8e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f
MD5 5ccb3aa6fb8cb9e20ec336e315d01dec
BLAKE2b-256 2a2894ef96d74927d35d2c53fba76e5636031958c374937d4714bcb9e4fe2506

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6
MD5 2133f6893eef41cd9331c7d0271044c4
BLAKE2b-256 dba53c06b9f81fcc97f5ae7f6a2cbdcb9af09c7525d24013bc8a588039971f12

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.7

File hashes

Hashes for numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5
MD5 76c61ce36317a7e509663829c6844fd9
BLAKE2b-256 3cd0d7d0b6af9a434b3ee271b02ada553b1c781294bff012b19318886f86c395

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page