Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.23.5.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl (14.5 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.23.5-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.23.5-cp311-cp311-win32.whl (12.2 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.23.5-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.23.5-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl (13.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.23.5-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.23.5-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl (13.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.23.5-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.23.5-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.23.5.tar.gz.

File metadata

  • Download URL: numpy-1.23.5.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5.tar.gz
Algorithm Hash digest
SHA256 1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a
MD5 8b2692a511a3795f3af8af2cd7566a15
BLAKE2b-256 4238775b43da55fa7473015eddc9a819571517d9a271a9f8134f68fb9be2f212

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d
MD5 633d574a35b8592bab502ef569b0731e
BLAKE2b-256 3fce04d7772671d8d3a14e426d7560047821c4e2d29ee2b5cfa252601412083b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135
MD5 89f6dc4a4ff63fca6af1223111cd888d
BLAKE2b-256 0f3d25e99f2191cce5029310c41cf9a34b5107d4475477bbce2f6d2e68c1c93b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8
MD5 b4d17d6b79a8354a2834047669651963
BLAKE2b-256 257b3b587a62aa54ad7ecf90eabfc77cf78e96d3df1d0e8c31fc534ad3ca6e17

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d
MD5 6c9af68b7b56c12c913678cafbdc44d6
BLAKE2b-256 190db8c34e4baf258d77a8592bdce45183e9a12874c167f5966c7dd467b74ea9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.23.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0
MD5 6936b6bcfd6474acc7a8c162a9393b3c
BLAKE2b-256 9b55a2669debe264b1f22a8133734595128e40b96a8066e17e53e8d160168e41

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387
MD5 3c60928ddb1f55163801f06ac2229eb0
BLAKE2b-256 e8adb935c7421657a032fd2a5332eed098f3b9993a155afceb1daa280ff6611f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2
MD5 6b7319f66bf7ac01b49e2a32470baf28
BLAKE2b-256 2b1a9ac00116d3a64b5ea031fdb2ff071062a6e2140553fa0770b5f007b84252

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa
MD5 6c7102f185b310ac70a62c13d46f04e6
BLAKE2b-256 b8d0e6a2cb9a3f3e863a43e50949e9ae704be70baf398fd5af59355f65c8740a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96
MD5 4222cfb36e5ac9aec348c81b075e2c05
BLAKE2b-256 6e7f94797cfe0263a30805f3074e535adfde02b885ac43d1e4dac85f82213b0b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6
MD5 3fea9247e1d812600015641941fa273f
BLAKE2b-256 6a03ae6c3c307f9c5c7516de3df3e764ebb1de33e54e197f0370992138433ef4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.23.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280
MD5 c63a6fb7cc16a13aabc82ec57ac6bb4d
BLAKE2b-256 af928efba008b9bda66456a1844a0e133dc76c08c5fb68c67a674f046211db29

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1
MD5 db07645022e56747ba3f00c2d742232e
BLAKE2b-256 e4f3679b3a042a127de0d7c84874913c3e23bb84646eb3bc6ecab3f8c872edc9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43
MD5 c787f4763c9a5876e86a17f1651ba458
BLAKE2b-256 676bd7c93d458d16464da9b3f560a20c363a19e242ebbb019bd1e1d797523851

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d
MD5 1b56e8e6a0516c78473657abf0710538
BLAKE2b-256 4d39d33202cc56c21123a50c6d5e160d00c18ff685ab864dbd4bf80dd40a7af9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63
MD5 8a412b79d975199cefadb465279fd569
BLAKE2b-256 0faedad4b8e7c65494cbbd1c063de114efaf9acd0f5f6171f044f0d4b6299787

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df
MD5 bad36b81e7e84bd7a028affa0659d235
BLAKE2b-256 08366589c7d5fc4fecda63de4453fefff7c58f6de2b1bb7dfbe7fa807bf85c46

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.23.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481
MD5 cc14d62a158e99c57f925c86551e45f0
BLAKE2b-256 d595f311e6fdaabe24f909eeb6d5482e3adef27fa8389cb8a84823ae560bf480

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719
MD5 54fa63341eaa6da346d824399e8237f6
BLAKE2b-256 4cb9038abd6fbd67b05b03cb1af590cfc02b7f1e5a37af7ac6a868f5093c29f5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d
MD5 6e417b087044e90562183b33f3049b09
BLAKE2b-256 5da1cdac656aed8bc04dc86296490f8dbef68474c3294cc31af30f2bd0ec06de

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de
MD5 9cbac793d77278f5d27a7979b64f6b5b
BLAKE2b-256 9e9dff17c357f7144301da85f8c03d56593cfd2904e9ce89f86c8eefaa96d2d5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f
MD5 174befd584bc1b03ed87c8f0d149a58e
BLAKE2b-256 8c7a171d3b4a54de835c8f95181dd2885607c0e04adca55ef99d9de559b4c9ba

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e
MD5 76095726ba459d7f761b44acf2e56bd1
BLAKE2b-256 4c426274f92514fbefcb1caa66d56d82ac7ac89f7652c0cef1e159a4b79e09f1

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.23.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07
MD5 7f38f7e560e4bf41490372ab84aa7a38
BLAKE2b-256 b90e10ab011eaebeed29d28ad710d0a3ab2654c06a2800e178e8f2f3a5947ad4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb
MD5 a8045b59187f2e0ccd4294851adbbb8a
BLAKE2b-256 c64f63f6f16d3f44a764a3b66c6233e133baf912e198a93e14c39ee991f587d0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398
MD5 57d5439556ab5078c91bdeffd9c0036e
BLAKE2b-256 bfd11017fe3f5d65c4fe054a793f18f940d913868bb2846a02d3f6244a829a30

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9
MD5 6c233a36339de0652139e78ef91504d4
BLAKE2b-256 63d43f0d610a2006434f2b7b2e0c80291368d59b0a03bb3e1911fdb9476232d4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.8

File hashes

Hashes for numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a
MD5 699daeac883260d3f182ae4bbbd9bbd2
BLAKE2b-256 d255b9b4bfb9d1d828d7d3192c4059e7b4a7d755ba2e1618089af4be77c152d1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page