Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.24.0.tar.gz (10.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl (14.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (19.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.24.0-cp311-cp311-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.24.0-cp311-cp311-win32.whl (12.4 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.24.0-cp310-cp310-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.24.0-cp310-cp310-win32.whl (12.4 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.24.0-cp39-cp39-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.24.0-cp39-cp39-win32.whl (12.4 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.24.0-cp38-cp38-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.24.0-cp38-cp38-win32.whl (12.4 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.24.0.tar.gz.

File metadata

  • Download URL: numpy-1.24.0.tar.gz
  • Upload date:
  • Size: 10.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0.tar.gz
Algorithm Hash digest
SHA256 c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853
MD5 1ca41c84ad9a116402a025d21e35bc64
BLAKE2b-256 5fc75ca7c100dcc85b5ef1b176bdf87be5e4392c2c3018e13cc7cdef828c6a09

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886
MD5 ac58db9a90d0bec95bc7850b9e462f34
BLAKE2b-256 61b7b9c36355e84354552a80d03210e56d1af3c7116d790adc6d9b1583dfd406

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239
MD5 4f027df0cc313ca626b106849999de13
BLAKE2b-256 258cc66b21e89da423adc7fef4c898bab75590f6e2b183a2c911d2a324449ccb

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a
MD5 26e32f942c9fd62f64fd9bf6df95b5b1
BLAKE2b-256 ec81c7783e046fc766a0e79b150214b9b04cadc41d08072db7bf6d92848d3887

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0
MD5 4bbc30a53009c48d364d4dc2c612af95
BLAKE2b-256 3fb83c549c217405795ec76a947c0e7fc90c0a698542d1b55e0df51d45916be9

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.24.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b
MD5 73bc66ad3ae8656ba18d64db98feb5e1
BLAKE2b-256 8490694fab08694c96edfd34f08c749a3b101da66d2a6649f0fd78ddaf667b2a

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72
MD5 cfdb0cb844f1db9be2cde998be54d65f
BLAKE2b-256 b0268fbdd09f9926dffc272cbb266f7079963f774190ba0b5fddf72097b2c728

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91
MD5 10404d6d1a5a9624f85018f61110b2be
BLAKE2b-256 f4e12ec4b9476bde1e0a9878fdde5fd122241007bf361eec3fb4ab08be3aecd0

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5
MD5 a8e836a768f73e9f509b11c3873c7e09
BLAKE2b-256 6c90c4a8a771b87fd7d1c9d6648fd08927825d31d80d98201149df14c9787214

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501
MD5 5fe4eb551a9312e37492da9f5bfb8545
BLAKE2b-256 1e8a2e23dd804191f725ff18a30468f316267be41ad07148a97eac5f48aa1d1d

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98
MD5 d194c96601222db97b0af54fce1cfb1d
BLAKE2b-256 465ee01d8cc4a70aaaaccaabd01a514ec4ecb1912d73aa48f658f9ba6ae1f784

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.24.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d
MD5 6ff4acbb7b1258ccbd528c151eb0fe84
BLAKE2b-256 2fe2e75afe5ff2a0d60ffade6bb38b4724adecc2df1d1d0858e7a1d0f4ad2c69

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0
MD5 7b8ad389a9619db3e1f8243fc0cfe63d
BLAKE2b-256 f8afd6a4f957a15287faa4f5d47c8f4290fd5fac24649ed8df0e4a6634bc493a

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e
MD5 02b35d6612369fcc614c6223aaec0119
BLAKE2b-256 9c4649ba030beef06d8a5d64fd533b9f837078b1a84ddda1a4ef18081ba5fbfb

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af
MD5 02022b335938af55cb83bbaebdbff8e1
BLAKE2b-256 d671d7125eaa3290ac95a2b7553f559f00daf81616b1db67dad065c4da687df9

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437
MD5 d60311246bd71b177258ce06e2a4ec57
BLAKE2b-256 d54bee7fc0ade6f54df52ecaf99263961d2693a22590e775730e34f89d910e6a

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e
MD5 acd5a4737d1094d5f40afa584dbd6d79
BLAKE2b-256 fab244a7b0979c51f01f131c1e8279bd481a380072a4ad8f5ac0efa94fad85e1

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.24.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc
MD5 c83e6d6946f32820f166c3f1ff010ab6
BLAKE2b-256 be3014e1ac50923e133c9068d22ee163d008d27bb5513f5f52141025fe1650a7

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5
MD5 c106393b46fa0302dbac49b14a4dfed4
BLAKE2b-256 a8e7695aa010663d32e55622fb41fac3e4217b2cfb88a94b7e1c336819e8d4e3

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41
MD5 14c0f2f52f20f13a81bba7df27f30145
BLAKE2b-256 1218396e3b4c796527bd5d0c10d591d077643295604ffebe4602baeff1809659

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1
MD5 c9e77130674372c73f8209d58396624d
BLAKE2b-256 daf6a35d900170b4d0d9ab798c167ac3ed58aad90af420f22930205e5292bba9

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea
MD5 1783a5d769566111d93c474c79892c01
BLAKE2b-256 515f65b0a05c28913932dc6e587abed4b1419eaaef90455273a071c67e9dc7fd

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1
MD5 c8ab7e4b919548663568a5b5a8b5eab4
BLAKE2b-256 6c197166677b4372c04f107d73333cf7e40abff36d16dc4e58c417e87e47d276

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.24.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for numpy-1.24.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab
MD5 0a1a48a8e458bd4ce581169484c17e4f
BLAKE2b-256 bb6dc358900abe2d57a0034b84549991d3a9f022271eab4e8d35563ddded8e27

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646
MD5 712c3718e8b53ff04c626cc4c78492aa
BLAKE2b-256 235db8212319ca51633f5413c58070d7bcd6ffa7922e83cd40cc4090c7467ae8

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3
MD5 36eb6143d1e2aac3c618275edf636983
BLAKE2b-256 daaaa3c32393eacda738e740bed4ff8a037f006b16214010862ef7987661b9a9

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f
MD5 e5e42b69a209eda7e6895dda39ea8610
BLAKE2b-256 ab2b89f2038e9e55649e9c1d7f31925d888e7142043047afbcfe79d2e542d6b7

See more details on using hashes here.

File details

Details for the file numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401
MD5 94ce5f6a09605a9675a0d464b1ec6597
BLAKE2b-256 59e494188f7b25ab66b5a15c060db09a2a6f0d35ca15c3475c245e3756e5b279

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page