Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.24.1.tar.gz (10.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl (14.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (19.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.24.1-cp311-cp311-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.24.1-cp311-cp311-win32.whl (12.4 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.24.1-cp310-cp310-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.24.1-cp310-cp310-win32.whl (12.4 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.24.1-cp39-cp39-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.24.1-cp39-cp39-win32.whl (12.4 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.24.1-cp38-cp38-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.24.1-cp38-cp38-win32.whl (12.4 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.24.1.tar.gz.

File metadata

  • Download URL: numpy-1.24.1.tar.gz
  • Upload date:
  • Size: 10.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1.tar.gz
Algorithm Hash digest
SHA256 2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2
MD5 dd3aaeeada8e95cc2edf9a3a4aa8b5af
BLAKE2b-256 ceb8c170db50ec49d5845bd771bc5549fe734ee73083c5c52791915f95d8e2bc

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566
MD5 e85b245c57a10891b3025579bf0cf298
BLAKE2b-256 f90394ee2d37561d77538e9f2c933a8b22ff234f15404420517b3f51cc3a0749

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086
MD5 46f19b4b147f8836c2bd34262fabfffa
BLAKE2b-256 494712ef5c22217e16afdf1ba1e7cbf6bc36b5df2e0ddee3f5557bc1e41c9e41

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d
MD5 619af9cd4f33b668822ae2350f446a15
BLAKE2b-256 01a8de4f84ccbbe0b616b4c36bd74dd21ddcac9f0d69466b91a60e3b8647d5ca

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51
MD5 ab7caa2c6c20e1fab977e1a94dede976
BLAKE2b-256 7339f104eb30cc3da44d1e10622418c5e6eb5ac224f0f20c97dba44cf2de2af9

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.24.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36
MD5 915dfb89054e1631574a22a9b53a2b25
BLAKE2b-256 d7184491cefc090909c3615315722fd09864b791c34a1f174845d41716278d23

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9
MD5 9e86658a414272f9749bde39344f9b76
BLAKE2b-256 db245343241cabd04224e4fc4f2cf12b35146a90a83f53bef9b541c439a7dada

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1
MD5 2a76bd9da8a78b44eb816bd70fa3aee3
BLAKE2b-256 85924a280c9d31ec4950b0de759722b9feb9cc9d680726da3578f6b993ae6236

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032
MD5 50bddb05acd54b4396100a70522496dd
BLAKE2b-256 b8a9993477a7d6a3fdb1b7bb2287333d027303b9af7643d90088a4c74a15dc1d

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8
MD5 8eedcacd6b096a568e4cb393d43b3ae5
BLAKE2b-256 cd9b0398b0638ccdda7167d407f50494406560d6e4b7f4e23c33588704e2928b

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2
MD5 1f3823999fce821a28dee10ac6fdd721
BLAKE2b-256 ee70c9055fe381e9e5103222e2f5efeb0cfb4524ab3c7d75b4eedc330380f9f5

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.24.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2
MD5 b246beb773689d97307f7b4c2970f061
BLAKE2b-256 24c144f013eba432b5f18a044b587f96aa76964ea4eacbf512bd6c947a9f78c9

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398
MD5 0bddb527345449df624d3cb9aa0e1b75
BLAKE2b-256 3d172cc40e1ed44f37b0bab7d62e0c6ba88362da23f48e52833ffdd1b9dfc220

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7
MD5 0c0a3012b438bb455a6c2fadfb1be76a
BLAKE2b-256 a0a644d97c9d6ec619f0ff3a5a8471e5a1283a0ff492348214d512a79f32e9e4

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9
MD5 4ebd7af622bf617b4876087e500d7586
BLAKE2b-256 395d21ea2da2aa6f419a7e48a582b7f5c99ba62822dcd173a6e5a58b22748a36

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7
MD5 9e543db90493d6a00939bd54c2012085
BLAKE2b-256 6e777b69133bf0f3a6b0000cdb6133ff5292734182ca0cd107ad7ff4c46e7bc1

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e
MD5 fec91d4c85066ad8a93816d71b627701
BLAKE2b-256 37155667b269bf2c3473133823733fc0cd8fa44850e4c1d61b45bccc798a3e5a

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.24.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f
MD5 db339ec0b2693cac2d7cf9ca75c334b1
BLAKE2b-256 065cd43e4b9eefc95bed55128cc08c535dfb0047cbeac5b7b3cd835a7a531974

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf
MD5 864b159e644848bc25f881907dbcf062
BLAKE2b-256 4355fea3342371187dea4044521c0ba82b90fb5a42fb92446be019b316dd3320

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700
MD5 848ad020bba075ed8f19072c64dcd153
BLAKE2b-256 ad9a98490aee9ca665cd04291658dd76e19c9b9d17680404aa9a122d5ef6ff79

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7
MD5 987f22c49b2be084b5d72f88f347d31e
BLAKE2b-256 af74070f80c41427f41a48bd4c873768f4989aacac7b8c0a3060566402339ce9

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6
MD5 4383c1137f0287df67c364fbdba2bc72
BLAKE2b-256 813afaa8aa531ec3001ff3b215892de791142e01516105da4c5e40a5686edca2

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c
MD5 9e9f1577f874286a8bdff8dc5551eb9f
BLAKE2b-256 0b737db81acb8b9b2dfa24ca51de6b84db878fd216865b7acb75f27e79105680

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.24.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for numpy-1.24.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1
MD5 09b20949ed21683ad7c9cbdf9ebb2439
BLAKE2b-256 141f935ce638d37f8762aafb3962c8b14bf715c3db21a9b30f0cec4b228e7387

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7
MD5 4c32a43bdb85121614ab3e99929e33c7
BLAKE2b-256 3b2b75d7ed116b17202a89e6cf1eba7e91ba83abb79ece7924d5b2c820f59025

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36
MD5 a96f29bf106a64f82b9ba412635727d1
BLAKE2b-256 c5f7df97e91bf7f4125ce7fa24296f4dfb6f1fc172c08413146b456f5b1299f1

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954
MD5 58366b1a559baa0547ce976e416ed76d
BLAKE2b-256 145ddf640c8bc151c742d5166aecfc394134bf92bba432472bfa7d606badd0fc

See more details on using hashes here.

File details

Details for the file numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407
MD5 8246de961f813f5aad89bca3d12f81e7
BLAKE2b-256 fac200bed438bc58fd80429b7ea2b28382f99156659ebc6dfa750d1520df59d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page