Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.24.4.tar.gz (10.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl (14.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (19.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.24.4-cp311-cp311-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.24.4-cp311-cp311-win32.whl (12.4 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.24.4-cp310-cp310-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.24.4-cp310-cp310-win32.whl (12.4 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.24.4-cp39-cp39-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.24.4-cp39-cp39-win32.whl (12.5 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.24.4-cp38-cp38-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.24.4-cp38-cp38-win32.whl (12.5 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.24.4.tar.gz.

File metadata

  • Download URL: numpy-1.24.4.tar.gz
  • Upload date:
  • Size: 10.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4.tar.gz
Algorithm Hash digest
SHA256 80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463
MD5 3f3995540a17854a29dc79f8eeecd832
BLAKE2b-256 a49b027bec52c633f6556dba6b722d9a0befb40498b9ceddd29cbe67a45a127c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2
MD5 e16bd49d5295dc1b01ed50d76229fb54
BLAKE2b-256 fcdd9106005eb477d022b60b3817ed5937a43dad8fd1f20b0610ea8a32fcb407

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a
MD5 3778338c15628caa3abd61e6f7bd46ec
BLAKE2b-256 42e74bf953c6e05df90c6d351af69966384fed8e988d0e8c54dad7103b59f3ba

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef
MD5 cdddfdeac437b0f20b4e366f00b5c42e
BLAKE2b-256 a4fd8dff40e25e937c94257455c237b9b6bf5a30d42dd1cc11555533be099492

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694
MD5 25e9f6bee2b65ff2a87588e717f15165
BLAKE2b-256 d8ecebef2f7d7c28503f958f0f8b992e7ce606fb74f9e891199329d5f5f87404

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.24.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d
MD5 37b23a4e4e148d61dd3a515ac5dbf7ec
BLAKE2b-256 35e276a11e54139654a324d107da1d98f99e7aa2a7ef97cfd7c631fba7dbde71

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5
MD5 2543611d802c141c8276e4868b4d9619
BLAKE2b-256 2297dfb1a31bb46686f09e68ea6ac5c63fdee0d22d7b23b8f3f7ea07712869ef

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7
MD5 902df9d5963e89d88a1939d94207857f
BLAKE2b-256 a74c96cdaa34f54c05e97c1c50f39f98d608f96f0677a6589e64e53104e22904

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254
MD5 20506ae8003faf097c6b3a8915b4140e
BLAKE2b-256 c0bc77635c657a3668cf652806210b8662e1aff84b818a55ba88257abf6637a8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810
MD5 0c918c16b58cb7f6773ea7d76e0bdaff
BLAKE2b-256 a9cc5ed2280a27e5dab12994c884f1f4d8c3bd4d885d02ae9e52a9d213a6a5e2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e
MD5 6ee768803d8ebac43ee0a04e628a69f9
BLAKE2b-256 22553d5a7c1142e0d9329ad27cece17933b0e2ab4e54ddc5c1861fbfeb3f7693

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.24.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc
MD5 fa67218966c0aef4094867cad7703648
BLAKE2b-256 c064908c1087be6285f40e4b3e79454552a701664a079321cff519d8c7051d06

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6
MD5 110a13ac016286059f0658b52b3646c0
BLAKE2b-256 10beae5bf4737cb79ba437879915791f6f26d92583c738d7d960ad94e5c36adf

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4
MD5 c873a14fa4f0210884db9c05e2904286
BLAKE2b-256 5ab32f9c21d799fa07053ffa151faccdceeb69beec5a010576b8991f614021f7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1
MD5 579b5c357c918feaef4af03af8afb721
BLAKE2b-256 645f3f01d753e2175cfade1013eea08db99ba1ee4bdb147ebcf3623b75d12aa7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64
MD5 25049e3aee79dde29e7a498d3ad13379
BLAKE2b-256 6b806cdfb3e275d95155a34659163b83c09e3a3ff9f1456880bec6cc63d71083

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8
MD5 49c444b0e572ef45f1d92c106a36004e
BLAKE2b-256 63386cc19d6b8bfa1d1a459daf2b3fe325453153ca7019976274b6f33d8b5663

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.24.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835
MD5 98adbf30c67154056474001c125f6188
BLAKE2b-256 189de02ace5d7dfccee796c37b995c63322674daf88ae2f4a4724c5dd0afcc91

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d
MD5 ea597b30187e55eb16ee31631e66f60d
BLAKE2b-256 7a7cd7b2a0417af6428440c0ad7cb9799073e507b1a465f827d058b826236964

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9
MD5 31487f9a52ef81f8f88ec7fce8738dad
BLAKE2b-256 8f2791894916e50627476cff1a4e4363ab6179d01077d71b9afed41d9e1f18bf

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f
MD5 4e6718e3b655219a2a733b4fa242ca32
BLAKE2b-256 1427638aaa446f39113a3ed38b37a66243e21b38110d021bfcb940c383e120f2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400
MD5 5713d9dc3dff287fb72121fe1960c48d
BLAKE2b-256 9acdd5b0402b801c8a8b56b04c1e85c6165efab298d2f0ab741c2406516ede3a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.24.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706
MD5 771c63f2ef0d31466bbb12362a532265
BLAKE2b-256 69650d47953afa0ad569d12de5f65d964321c208492064c38fe3b0b9744f8d44

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.24.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.24.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2
MD5 8572a3a0973fa78355bcb5f737745b47
BLAKE2b-256 d1578d328f0b91c733aa9aa7ee540dbc49b58796c862b4fbcb1146c701e888da

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc
MD5 2cc0967af29df3caef9fb3520f14e071
BLAKE2b-256 985d5738903efe0ecb73e51eb44feafba32bdba2081263d40c5043568ff60faf

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e
MD5 dee3f0c7482f1dc8bd1cd27b9b028a2c
BLAKE2b-256 256f2586a50ad72e8dbb1d8381f837008a0321a3516dfd7cb57fc8cf7e4bb06b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f
MD5 9ed27941388fdb392e8969169f3fc600
BLAKE2b-256 a7aef53b7b265fdc701e663fbb322a8e9d4b14d9cb7b2385f45ddfabfc4327e4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61
MD5 f39a0cc3655a482af7d300bcaff5978e
BLAKE2b-256 1110943cfb579f1a02909ff96464c69893b1d25be3731b5d3652c2e0cf1281ea

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page