Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.25.0.tar.gz (10.4 MB view details)

Uploaded Source

Built Distributions

numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl (14.9 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (19.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.25.0-cp311-cp311-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.25.0-cp311-cp311-win32.whl (12.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.25.0-cp310-cp310-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.25.0-cp310-cp310-win32.whl (12.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.25.0-cp39-cp39-win_amd64.whl (15.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.25.0-cp39-cp39-win32.whl (12.6 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.25.0.tar.gz.

File metadata

  • Download URL: numpy-1.25.0.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0.tar.gz
Algorithm Hash digest
SHA256 f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19
MD5 b236497153bc19b4a560ac485e4c2754
BLAKE2b-256 d0b2fe774844d1857804cc884bba67bec38f649c99d0dc1ee7cbbf1da601357c

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8
MD5 0fa0734a8ff952dd643e7b9826168099
BLAKE2b-256 7672d9e66a7bef82261aff26c71b8ac8b13fa2ffa965e046be958f949ca3388f

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542
MD5 942b4276f8d563efb111921d5995834c
BLAKE2b-256 75747eec4db7eea3796fe6f47bc358c24447fc66a080ac2fd35cbe4a3cd8d17b

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e
MD5 dc36096628e65077c2a44c493606c668
BLAKE2b-256 e351524ba2b98e083b59dc287011adc6829778c496998aa329715a6a13ae4735

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.25.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24
MD5 6e8ed7865792246cac2213bad404f4da
BLAKE2b-256 de8bb2d73b913be92056b1f77b0b9d184d93f368353540adf91e699a10a2effb

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.25.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153
MD5 67862d7849b4f0f943760142f1628aed
BLAKE2b-256 ef29a2503fed1bb38902e789f3e73259d760911fb7b51420896716502c727aa1

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1
MD5 e36b37acf1acfbc185face67c67bfe09
BLAKE2b-256 fa9f9023a2135a86a80369c942670ef23c2c838aee3408f982e3b9bcaf9ffe61

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82
MD5 39e241f265611a9c1e89499054ead1c9
BLAKE2b-256 f6ae546c18cad7525242d87def9ee1cba2e407028044f79c023ea8b2a11397d2

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232
MD5 ad1c0b4b406c9a2f1b42792502bc456b
BLAKE2b-256 8c00a65518f58b9bbba597cd757a765d7a34fea3d8fd089a8ecc7f6eb4e4f42d

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c
MD5 6a85cca47af69e3d45b4efab9490af4d
BLAKE2b-256 e8bd937ffc7345985456c963089418c4c7efdb2ca3af36624c5ea60a07d99bcf

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0
MD5 5f6477db172f59a4fd7f591e1007e632
BLAKE2b-256 bbb90f7a1d48d5c65c7a2cc8d5de119318a254351a0146e696855ade26615455

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.25.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6
MD5 e983b193f7d63568eac85d8bda8be62e
BLAKE2b-256 13a0bd219e125915e1d5706a5d00b87cd93932d6a204d976aea09fa0f36af5a1

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.25.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6
MD5 22402904f194376b8d2de01481f04b03
BLAKE2b-256 a5c7586bc658351595f252dd6fa31a14ca28ca7de7d93171f933b1c193e7e32c

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d
MD5 bfccabfbd866c59545ce11ecdac60701
BLAKE2b-256 a8a5dded2b52d4a460f265973f2aaedc5ea82814d471241e5d17599506c4ee0e

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16
MD5 a61227341b8903fa66ab0e0fdaa15430
BLAKE2b-256 770379b0bfc6e9dcd5eabbb17a714a2480ad3f932063eb8b39f6116ac207d5e3

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208
MD5 72b0ad52f96a41a7a82f511cb35c7ef1
BLAKE2b-256 edf61ce8d0bdcf926a5d94ae2a793eee4364c76ba2d1a5b73ee9de9aebc3a0e0

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24
MD5 f57f98fee3da2d98f752f755a880a508
BLAKE2b-256 c87c87cf5dc663803120901302db2494e625d762e19060b390d925e3e8666b18

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4
MD5 4657f046d9d9d62e4baeae9b2cc1b4ea
BLAKE2b-256 a7718cadc39a58fc18a91ad135c3a33b6a6a7c0ccf00adb4263d6f2aebf8124d

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.25.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3
MD5 1322210ae6a874293d13c4bb3abf24ee
BLAKE2b-256 504b2246882e9c89e8da081296bef4539ab1d44bf97f757931ddaf5f7d0a3b58

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.25.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for numpy-1.25.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4
MD5 c228105e3c4c8887823d99e35eea9d2b
BLAKE2b-256 5268ce0a665654fbc26a00ba9dfbd98a6f749246576bbc826710676ca9f67a1c

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790
MD5 6652d9df23c84e54466b10f4a2a290be
BLAKE2b-256 8edea6cddb5b3b2ffd03bc0061dcb7c0edeaff2d10460eed8e0e9a57341ce455

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b
MD5 34b734a2c7698d59954c29fe7c0536f3
BLAKE2b-256 68441ff079e62f44fc6d17aea45ec6a7008c033c9a59972644c320c4fda95a49

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0
MD5 ce15327793c39beecee8401356bc6c9b
BLAKE2b-256 d2b0ce6c0056f057e681b0b9f78900e122715389f865047c25fc2f37bfe2f8fe

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9
MD5 58641e53bcb1e13dfed1f5af1aff94bc
BLAKE2b-256 d0627c85c27e4277b142a91023bfb69ba27f1783777d31f5e920b314e1a92f69

See more details on using hashes here.

File details

Details for the file numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4
MD5 25e843425697364f50dd7288ff9d2ce1
BLAKE2b-256 f47308500367cf69634970c87d11bcc82dc0daf4d9554a3e5d4a3750f26c25b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page