Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.25.2.tar.gz (10.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl (15.4 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (20.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.25.2-cp311-cp311-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.25.2-cp311-cp311-win32.whl (12.7 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.25.2-cp310-cp310-win_amd64.whl (15.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.25.2-cp310-cp310-win32.whl (12.7 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.25.2-cp39-cp39-win_amd64.whl (15.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.25.2-cp39-cp39-win32.whl (12.7 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.25.2.tar.gz.

File metadata

  • Download URL: numpy-1.25.2.tar.gz
  • Upload date:
  • Size: 10.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2.tar.gz
Algorithm Hash digest
SHA256 fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760
MD5 cee1996a80032d47bdf1d9d17249c34e
BLAKE2b-256 a0418f53eff8e969dd8576ddfb45e7ed315407d27c7518ae49418be8ed532b07

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf
MD5 fc89421b79e8800240999d3a1d06a4d2
BLAKE2b-256 2d2a5d85ca5d889363ffdec3e3258c7bacdc655801787d004a55e04cf19eeb4a

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901
MD5 3f68e6b4af6922989dc0133e37db34ee
BLAKE2b-256 2c539a023f6960ea6c8f66eafae774ba7ab1700fd987158df5aa9dbb28f98f8b

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55
MD5 bbe051cbd5f8661dd054277f0b0f0c3d
BLAKE2b-256 1158e921b73d1a181d49fc5a797f5151b7be78cbc5b4483f8f6042e295b85c01

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.25.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4
MD5 834a147aa1adaec97655018b882232bd
BLAKE2b-256 72b202770e60c4e2f7e158d923ab0dea4e9f146a2dbf267fec6d8dc61d475689

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.25.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d
MD5 e113865b90f97079d344100c41226fbe
BLAKE2b-256 5ce4990c6cb09f2cd1a3f53bcc4e489dad903faa01b058b625d84bb62d2e9391

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364
MD5 961d390e8ccaf11b1b0d6200d2c8b1c0
BLAKE2b-256 cdfee900cb2ebafae04b7570081cefc65b6fdd9e202b9b353572506cea5cafdf

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf
MD5 e54a2e23272d1c5e5b278bd7e304c948
BLAKE2b-256 326a65dbc57a89078af9ff8bfcd4c0761a50172d90192eaeb1b6f56e5fbf1c3d

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2
MD5 302d65015ddd908a862fb3761a2a0363
BLAKE2b-256 50673e966d99a07d60a21a21d7ec016e9e4c2642a86fea251ec68677daf71d4d

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f
MD5 3988b96944e7218e629255214f2598bd
BLAKE2b-256 86a1b8ef999c32f26a97b5f714887e21f96c12ae99a38583a0a96e65283ac0a1

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418
MD5 5a56e639defebb7b871c8c5613960ca3
BLAKE2b-256 c9573cb8131a0e6d559501e088d3e685f4122e9ff9104c4b63e4dfd3a577b491

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.25.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545
MD5 4944cf36652be7560a6bcd0d5d56e8ea
BLAKE2b-256 b7db4d37359e2c9cf8bf071c08b8a6f7374648a5ab2e76e2e22e3b808f81d507

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.25.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044
MD5 f52bb644682deb26c35ddec77198b65c
BLAKE2b-256 63bda1c256cdea5d99e2f7e1acc44fc287455420caeb2e97d43ff0dda908fae8

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9
MD5 3e4e3ad02375ba71ae2cd05ccd97aba4
BLAKE2b-256 736f2a0d0ad31a588d303178d494787f921c246c6234eccced236866bc1beaa5

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357
MD5 88cf69dc3c0d293492c4c7e75dccf3d8
BLAKE2b-256 713c3b1981c6a1986adc9ee7db760c0c34ea5b14ac3da9ecfcf1ea2a4ec6c398

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187
MD5 ae027dd38bd73f09c07220b2f516f148
BLAKE2b-256 b1393f88e2bfac1fb510c112dc0c78a1e7cad8f3a2d75e714d1484a044c56682

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f
MD5 b5cb0c3b33ef6d93ec2888f25b065636
BLAKE2b-256 c3ea1d95b399078ecaa7b5d791e1fdbb3aee272077d9fd5fb499593c87dec5ea

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3
MD5 33518ccb4da8ee11f1dee4b9fef1e468
BLAKE2b-256 d5508aedb5ff1460e7c8527af15c6326115009e7c270ec705487155b779ebabb

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.25.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380
MD5 a4371272c64493beb8b04ac46c4c1521
BLAKE2b-256 df18181fb40f03090c6fbd061bb8b1f4c32453f7c602b0dc7c08b307baca7cd7

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.25.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for numpy-1.25.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01
MD5 41df58a9935c8ed869c92307c95f02eb
BLAKE2b-256 81e3f562c2d76af16c1d79e73de04f9d08e5a7fd0e50ae12692acd4dbd2501f7

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f
MD5 fe1fc32c8bb005ca04b8f10ebdcff6dd
BLAKE2b-256 d376fe6b9e75883d1f2bd3cd27cbc7307ec99a0cc76fa941937c177f464fd60a

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295
MD5 e0d608c9e09cd8feba48567586cfefc0
BLAKE2b-256 691fc95b1108a9972a52d7b1b63ed8ca70466b59b8c1811bd121f1e667cc45d8

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca
MD5 beab540edebecbb257e482dd9e498b44
BLAKE2b-256 6db694a587cd64ef090f844ab1d8c8f1af44d07be7387f5f1a40eb729a0ff9c9

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926
MD5 d96e754217d29bf045e082b695667e62
BLAKE2b-256 0fa85057b97c395a710999b5697ffedd648caee82c24a29595952d26bd750155

See more details on using hashes here.

File details

Details for the file numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3
MD5 fb55f93a8033bde854c8a2b994045686
BLAKE2b-256 8bd922c304cd123e0a1b7d89213e50ed6ec4b22f07f1117d64d28f81c08be428

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page