Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.26.0.tar.gz (15.6 MB view details)

Uploaded Source

Built Distributions

numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl (15.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (20.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.26.0-cp312-cp312-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-1.26.0-cp312-cp312-win32.whl (20.0 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-1.26.0-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.26.0-cp311-cp311-win32.whl (20.8 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.26.0-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.26.0-cp310-cp310-win32.whl (20.7 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.26.0-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.26.0-cp39-cp39-win32.whl (20.8 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.26.0.tar.gz.

File metadata

  • Download URL: numpy-1.26.0.tar.gz
  • Upload date:
  • Size: 15.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0.tar.gz
Algorithm Hash digest
SHA256 f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf
MD5 69bd28f07afbeed2bb6ecd467afcd469
BLAKE2b-256 55b3b13bce39ba82b7398c06d10446f5ffd5c07db39b09bd37370dc720c7951c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299
MD5 60dc766d863d8ab561b494a7a759d562
BLAKE2b-256 25b66dcf9f2a4fc85699dd858c1cdb018d07d490a629f66a38e52bb8b0096cbd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8
MD5 1515773d4f569d44c6a757cb5a636cb2
BLAKE2b-256 086024b68df50a8b513e6de12eeed25028060db6c6abc831eb38178b38e67eb2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369
MD5 c11b4d1181b825407b71a1ac8ec04a10
BLAKE2b-256 ef9757fa19bd7b7cc5e7344ad912617c7b535d08a0878b31e904e35dcf4f550d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112
MD5 e7d7ded11f89baf760e5ba69249606e4
BLAKE2b-256 98d71cc7a11118408ad21a5379ff2a4e0b0e27504c68ef6e808ebaa90ee95902

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-1.26.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95
MD5 f4a31765889478341597a7140044db85
BLAKE2b-256 9866f0a846751044d0b6db5156fb6304d0336861ed055c21053a0f447103939c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69
MD5 49e3498e0e0ec5c1f6314fb86d7f006e
BLAKE2b-256 4508025bb65dbe19749f1a67a80655670941982e5d0144a4e588ebbdbcfe7983

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505
MD5 cb9abc312090046563eae619c0b68210
BLAKE2b-256 e3e24ecfbc4a2e3f9d227b008c92a5d1f0370190a639b24fec3b226841eaaf19

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb
MD5 66a21bf4d8a6372cc3c4c89a67b96279
BLAKE2b-256 2f70c071b2347e339f572f5aa61f649b70167e5dd218e3da3dc600c9b08154b9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581
MD5 53429b1349542c38b2f3822c7f2904d5
BLAKE2b-256 7a726d1cbdf0d770016bc9485f9ef02e73d5cb4cf3c726f8e120b860a403d307

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388
MD5 9624a97f1df9f64054409d274c1502f3
BLAKE2b-256 e983f8a62f08d38d831a2980427ffc465a4207fe600124b00cfb0ef8265594a7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99
MD5 3355b510410cb20bacfb3c87632a731a
BLAKE2b-256 93fd3f826c6d15d3bdcf65b8031e4835c52b7d9c45add25efa2314b53850e1a2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.26.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229
MD5 7bfb0c44e95f765e7fc5a7a86968a56c
BLAKE2b-256 58d2cbc329aa908cb963bd849f14e24f59c002a488e9055fab2c68887a6b5f1c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148
MD5 3b037dc746499f2a19bb58b55fdd0bfb
BLAKE2b-256 374163975634a93da2a384d3c8084eba467242cab68daab0cd8f4fd470dcee26

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c
MD5 a4654b46bc10738825f37a1797e1eba5
BLAKE2b-256 c436161e2f8110f8c49e59f6107bd6da4257d30aff9f06373d0471811f73dcc5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208
MD5 0cc5f95c4aebab0ca4f9f66463981016
BLAKE2b-256 a984baf694be765d68c73f0f8a9d52151c339aed5f2d64205824a6f29021170c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd
MD5 207603ee822d8af4542f239b8c0a7a67
BLAKE2b-256 35219e150d654da358beb29fe216f339dc17f2b2ac13fff2a89669401a910550

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a
MD5 6115698fdf5fb8cf895540a57d12bfb9
BLAKE2b-256 d22fb42860931c1479714201495ffe47d74460a916ae426a21fc9b68c5e329aa

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91
MD5 d523a40f0a5f5ba94f09679adbabf825
BLAKE2b-256 cc05ef9fc04adda45d537619ea956bc33489f50a46badc949c4280d8309185ec

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.26.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 20.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896
MD5 3f101e51b3b5f8c3f01256da645a1962
BLAKE2b-256 9b16bb4ff6c803f3000c130618f75a879fc335c9f9434d1317033c35876709ca

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3
MD5 32717dd51a915e9aee4dcca72acb00d0
BLAKE2b-256 c9ccbe866f190cfe818e1eb128f887b3cd715cfa554de9d5fe876c5a3ea3af48

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be
MD5 2af03fbadd96360b26b993975709d072
BLAKE2b-256 9b5af265a1ba3641d16b5480a217a6aed08cceef09cd173b568cd5351053472a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68
MD5 1a5fa023e05e050b95549d355890fbb6
BLAKE2b-256 6ac7dc05fb56c0536f499d75ef4e201c37facb75e1ad1f416b98a9939f89f6f1

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292
MD5 874567083be194080e97bea39ea7befd
BLAKE2b-256 5cff0e1f31c70495df6a1afbe98fa237f36e6fb7c5443fcb9a53f43170e5814c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd
MD5 052d84a2aaad4d5a455b64f5ff3f160b
BLAKE2b-256 bef8034752c5131c46e10364e4db241974f2eb6bb31bbfc4335344c19e17d909

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2
MD5 8233224840dcdda49b08da1d5e91a730
BLAKE2b-256 97434cd9dc8c051537ed0613fcfc4229dfb9eb39fe058c8d42632977465bfdb5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.26.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b
MD5 69f6aa8a0f3919797cb28fab7069a578
BLAKE2b-256 4b803ae14edb54426376bb1182a236763b39980ab609424825da55f3dbff0629

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49
MD5 e49d00c779df59a786d9f41e0d73c520
BLAKE2b-256 233635495262d6faf673f2a0948cd2be2bf19f59877c45cba9d4c0b345c5288b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c
MD5 3d888129c86357ccfb779d9f0c1256f5
BLAKE2b-256 75cd7ae0f2cd3fc68aea6cfb2b7e523842e1fa953adb38efabc110d27ba6e423

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f
MD5 b34af2ddf43b28207ec7e2c837cbe35f
BLAKE2b-256 41951145b9072e39ef4c40d62f76d0d80be65a7c383ba3ef9ccd2d9a97974752

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8
MD5 a3628f551d851fbcde6551adb8fcfe2b
BLAKE2b-256 b4cafc1c4f8a2a4693ff437d039acf2dc93a190b9494569fbed246f535c44fc8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2
MD5 19698f330ae322c4813eed6e790a04d5
BLAKE2b-256 2a11c074f7530bac91294b09988c3ff7b024bf13bf6c19f751551fa1e700c27d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page