Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.26.4.tar.gz (15.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl (15.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (20.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.26.4-cp312-cp312-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-1.26.4-cp312-cp312-win32.whl (5.7 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl (17.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-1.26.4-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.26.4-cp311-cp311-win32.whl (6.0 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.26.4-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.26.4-cp310-cp310-win32.whl (6.0 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.26.4-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.26.4-cp39-cp39-win32.whl (6.0 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.26.4.tar.gz.

File metadata

  • Download URL: numpy-1.26.4.tar.gz
  • Upload date:
  • Size: 15.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4.tar.gz
Algorithm Hash digest
SHA256 2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010
MD5 19550cbe7bedd96a928da9d4ad69509d
BLAKE2b-256 656e09db70a523a96d25e115e71cc56a6f9031e7b8cd166c1ac8438307c14058

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0
MD5 57bbd5c0b3848d804c416cbcab4a0ae8
BLAKE2b-256 f45ffafd8c51235f60d49f7a88e2275e13971e90555b67da52dd6416caec32fe

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c
MD5 928954b41c1cd0e856f1a31d41722661
BLAKE2b-256 8e02570545bac308b58ffb21adda0f4e220ba716fb658a63c151daecc3293350

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30
MD5 7f13e2f07bd3e4a439ade0e4d27905c6
BLAKE2b-256 3f723df6c1c06fc83d9cfe381cccb4be2532bbd38bf93fbc9fad087b6687f1c0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818
MD5 305155bd5ae879344c58968879584ed1
BLAKE2b-256 162e86f24451c2d530c88daf997cb8d6ac622c1d40d19f5a031ed68a4b73a374

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-1.26.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110
MD5 2cc3b0757228078395da3efa3dc99f23
BLAKE2b-256 284a46d9e65106879492374999e76eb85f87b15328e06bd1550668f79f7b18c6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0
MD5 5bd81ce840bb2e42befe01efb0402b79
BLAKE2b-256 768c2ba3902e1a0fc1c74962ea9bb33a534bb05984ad7ff9515bf8d07527cadd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a
MD5 cd8d3c00bbc89f9bc07e2df762f9e2ae
BLAKE2b-256 4c0c9c603826b6465e82591e05ca230dfc13376da512b25ccd0894709b054ed0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed
MD5 1ceb224096686831ad731e472b65e96a
BLAKE2b-256 0f50de23fde84e45f5c4fda2488c759b69990fd4512387a8632860f3ac9cd225

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b
MD5 5369536d4c45fbe384147ff23185b48a
BLAKE2b-256 79f897f10e6755e2a7d027ca783f63044d5b1bc1ae7acb12afe6a9b4286eac17

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b
MD5 6f16f3d70e0d95ce2b032167c546cc95
BLAKE2b-256 755bca6c8bd14007e5ca171c7c03102d17b4f4e0ceb53957e8c44343a9546dcc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218
MD5 d95ce582923d24dbddbc108aa5fd2128
BLAKE2b-256 95128f2020a8e8b8383ac0177dc9570aad031a3beb12e38847f7129bacd96228

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2
MD5 5fd325dd8704023c1110835d7a1b095a
BLAKE2b-256 3f6b5610004206cf7f8e7ad91c5a85a8c71b2f2f8051a0c0c4d5916b76d6cbb2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.26.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20
MD5 1e4a18612ee4d0e54e0833574ebc6d25
BLAKE2b-256 d2b7a734c733286e10a7f1a8ad1ae8c90f2d33bf604a96548e0a4a3a6739b468

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a
MD5 1b6771350d2f496157430437a895ba4b
BLAKE2b-256 dfa04e0f14d847cfc2a633a1c8621d00724f3206cfeddeb66d35698c4e2cf3d2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a
MD5 9d4ae1b0b27a625400f81ed1846a5667
BLAKE2b-256 09bf2b1aaf8f525f2923ff6cfcf134ae5e750e279ac65ebf386c75a0cf6da06a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5
MD5 eb0cdd03e1ee2eb45c57c7340c98cf48
BLAKE2b-256 3ad0edc009c27b406c4f9cbc79274d6e46d634d139075492ad055e3d68445925

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e
MD5 71a7ab11996fa370dc28e28731bd5c32
BLAKE2b-256 79ae7e5b85136806f9dadf4878bf73cf223fe5c2636818ba3ab1c585d0403164

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef
MD5 eb601e80194d2e1c00d8daedd8dc68c4
BLAKE2b-256 1a2e151484f49fd03944c4a3ad9c418ed193cfd02724e138ac8a9505d056c582

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71
MD5 719d1ff12db38903dcfd6749078fb11d
BLAKE2b-256 1157baae43d14fe163fa0e4c47f307b6b2511ab8d7d30177c491960504252053

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5
MD5 920ad1f50e478b1a877fe7b7a46cc520
BLAKE2b-256 1977538f202862b9183f54108557bfda67e17603fc560c384559e769321c9d92

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.26.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07
MD5 2c1f73fd9b3acf4b9b0c23e985cdd38f
BLAKE2b-256 d5ef6ad11d51197aad206a9ad2286dc1aac6a378059e06e8cf22cd08ed4f20dc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2
MD5 de4f9da0a4e6dfd4cec39c7ad5139803
BLAKE2b-256 39fe39ada9b094f01f5a35486577c848fe274e374bbf8d8f472e1423a0bbd26d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a
MD5 89937c3bb596193f8ca9eae2ff84181e
BLAKE2b-256 24036f229fe3187546435c4f6f89f6d26c129d4f5bed40552899fcf1f0bf9e50

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f
MD5 d428e3da2df4fa359313348302cf003a
BLAKE2b-256 4bd7ecf66c1cd12dc28b4040b15ab4d17b773b87fa9d29ca16125de01adb36cd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4
MD5 ad4e82b225aaaf5898ea9798b50978d8
BLAKE2b-256 fca54beee6488160798683eed5bdb7eead455892c3b4e1f78d79d8d3f3b084ac

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a
MD5 63ac60767f6724490e587f6010bd6839
BLAKE2b-256 20f7b24208eba89f9d1b58c1668bc6c8c4fd472b20c45573cb767f59d49fb0f6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0
MD5 90f33cdd8934cd07192d6ede114d8d4d
BLAKE2b-256 a794ace0fdea5241a27d13543ee117cbc65868e82213fb31a8eb7fe9ff23f313

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea
MD5 fafa4453e820c7ff40907e5dc79d8199
BLAKE2b-256 b542054082bd8220bbf6f297f982f0a8f5479fcbc55c8b511d928df07b965869

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.26.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6
MD5 ab8a9ab69f16b7005f238cda76bc0bac
BLAKE2b-256 287d4b92e2fe20b214ffca36107f1a3e75ef4c488430e64de2d9af5db3a4637d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c
MD5 86785b3a7cd156c08c2ebc26f7816fb3
BLAKE2b-256 16ee9df80b06680aaa23fc6c31211387e0db349e0e36d6a63ba3bd78c5acdf11

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd
MD5 376ff29f90b7840ae19ecd59ad1ddf53
BLAKE2b-256 431201a563fc44c07095996d0129b8899daf89e4742146f7044cdbdb3101c57f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3
MD5 baf4b7143c7b9ce170e62b33380fb573
BLAKE2b-256 5430c2a907b9443cf42b90c17ad10c1e8fa801975f01cb9764f3f8eb8aea638b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764
MD5 fee12f0a3cbac7bbf1a1c2d82d3b02a9
BLAKE2b-256 6d64c3bcdf822269421d85fe0d64ba972003f9bb4aa9a419da64b86856c9961f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be
MD5 406aea6081c1affbebdb6ad56b5deaf4
BLAKE2b-256 ae8cab03a7c25741f9ebc92684a20125fbc9fc1b8e1e700beb9197d750fdff88

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c
MD5 ec2310f67215743e9c5d16b6c9fb87b6
BLAKE2b-256 7d24ce71dc08f06534269f66e73c04f5709ee024a1afe92a7b6e1d73f158e1f8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page