Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to

efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.6.1.zip (3.4 MB view details)

Uploaded Source

numpy-1.6.1.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

numpy-1.6.1.win32-py3.2.exe (2.7 MB view details)

Uploaded Source

numpy-1.6.1.win32-py3.1.exe (2.7 MB view details)

Uploaded Source

numpy-1.6.1.win32-py2.7.exe (2.6 MB view details)

Uploaded Source

numpy-1.6.1.win32-py2.6.exe (2.6 MB view details)

Uploaded Source

numpy-1.6.1.win32-py2.5.exe (2.5 MB view details)

Uploaded Source

numpy-1.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (11.6 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.6.1-cp27-cp27mu-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.6.1-cp27-cp27m-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.7m

numpy-1.6.1-cp26-cp26mu-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.6mu

numpy-1.6.1-cp26-cp26m-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.6.1.zip.

File metadata

  • Download URL: numpy-1.6.1.zip
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.6.1.zip
Algorithm Hash digest
SHA256 ef3af2eb3cbe81e83a7aedb42ef6bbff6432230a466db49fef946f0f2d94412e
MD5 462c22b8eb221c78ddd51de98fbb5979
BLAKE2b-256 09102207a8f36b57f7b3d8fa420d717edf1abf42e687405bc9eaf290f3c74518

See more details on using hashes here.

File details

Details for the file numpy-1.6.1.tar.gz.

File metadata

  • Download URL: numpy-1.6.1.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.6.1.tar.gz
Algorithm Hash digest
SHA256 788b1bc712ee566d4b4d62ef99736c5830fa264cbc56f8651ded1e795c755cdd
MD5 2bce18c08fc4fce461656f0f4dd9103e
BLAKE2b-256 dc6a5899b7baaa3ebbcc49fb97cdf6b96964d65684864562a1f4ca4cc9f578c8

See more details on using hashes here.

File details

Details for the file numpy-1.6.1.win32-py3.2.exe.

File metadata

File hashes

Hashes for numpy-1.6.1.win32-py3.2.exe
Algorithm Hash digest
SHA256 ec4cf00471cdf65aac59868e5b77f6e87c910dfa018a5ae6d2c21d8c3ccb91aa
MD5 a6b66602e72436db37e6edbbce269fdf
BLAKE2b-256 bd8c18b43361fbb79c5fd69e54acd144618df86cad6a461b050ea8fb9870d234

See more details on using hashes here.

File details

Details for the file numpy-1.6.1.win32-py3.1.exe.

File metadata

File hashes

Hashes for numpy-1.6.1.win32-py3.1.exe
Algorithm Hash digest
SHA256 e22ce5387abdb0c32411ee19c9f099f15846397fa85b17ea143b6e32505d5119
MD5 e2b539da620e186df211dbd7339a8993
BLAKE2b-256 705847971a9c98cbb2c33da21b35a8d5c6c2ad5bd372029c7cd047bb015f9982

See more details on using hashes here.

File details

Details for the file numpy-1.6.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for numpy-1.6.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 95594638aef3fa65243b07e99132310d6c00117c8c5eddcbf5329b1f5d28abae
MD5 30bec16292be262bd78ff1878a7d8953
BLAKE2b-256 49da9296bc3b400416472560472537139c0023baf1e9654a22412ae2579cfb58

See more details on using hashes here.

File details

Details for the file numpy-1.6.1.win32-py2.6.exe.

File metadata

File hashes

Hashes for numpy-1.6.1.win32-py2.6.exe
Algorithm Hash digest
SHA256 ba443a0dee058f3a75ebf89c5487b3fa6138363300e31e39fffc201335e5d21a
MD5 67e0c10cf55b713bd27cbba94dee9673
BLAKE2b-256 6644faa65dfa761cb241c6569e7c59a1ac787b25a7c595298967d153998b7a1e

See more details on using hashes here.

File details

Details for the file numpy-1.6.1.win32-py2.5.exe.

File metadata

File hashes

Hashes for numpy-1.6.1.win32-py2.5.exe
Algorithm Hash digest
SHA256 9f8d76534aba9087d5db281d75f578a076290f191a27bea6899ff7d76d86263d
MD5 33686581523c9e7368aefdd63a5952ef
BLAKE2b-256 83684416a59370addad4dcee0ba726109f7b1f39cebda825a66381f5e654d797

See more details on using hashes here.

File details

Details for the file numpy-1.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5bd0a2a68903f1b286dd646f42f92f7de7bde6bbf3c4829a3f078400f48fa1e7
MD5 5eb7aa006bac4ee844ff579c09516224
BLAKE2b-256 a6b9a9e4411c08a568a9558e4d4efc15cd26cf9f2f84e4d7ea800742fedb858c

See more details on using hashes here.

File details

Details for the file numpy-1.6.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1a20beec53bfa9fecf46c1daa78ba558a161ca483de8d5471b5e9ca07bfc09ea
MD5 ed05d3f03f8f78475549e4d502244828
BLAKE2b-256 443b63aa0464c495de6bac1f9f5a6c4626264ea07ad85b51cf6ebfdbbaa9fab4

See more details on using hashes here.

File details

Details for the file numpy-1.6.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5844f975f35d011b029fe55a5ee92c1801e5ac7a1d2af2155a9c75492bcaa364
MD5 b5c16ef11d52d1431a1c735b636decc3
BLAKE2b-256 452523e8f084706cebdfbe19064f6195b129122e9b7cd2ce218897f8e8608759

See more details on using hashes here.

File details

Details for the file numpy-1.6.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dc401181cabcbe4ab6a9f0951764899e76f38e93c0bb78ec0e9491ff88570158
MD5 24617ed5b551bead42bd354339d160cf
BLAKE2b-256 d60ddee7abf1e1eedd50517c6c96d161b0528a9231626866ca43a0d9c3bff1f2

See more details on using hashes here.

File details

Details for the file numpy-1.6.1-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.1-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1545cbf3a25718722fc53dfe7de0e5a63aa567dea4915ced07d026c85e172c5
MD5 9d385bac49afa4c57015a942065aea46
BLAKE2b-256 a847aa5823f1f185ddb2c3f3413ecbb213ffbad67909e620bcf2d891659a2bfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page