Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to

efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.6.2.zip (2.9 MB view details)

Uploaded Source

numpy-1.6.2.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

numpy-1.6.2.win32-py3.2.exe (2.7 MB view details)

Uploaded Source

numpy-1.6.2.win32-py3.1.exe (2.7 MB view details)

Uploaded Source

numpy-1.6.2.win32-py2.7.exe (2.6 MB view details)

Uploaded Source

numpy-1.6.2.win32-py2.6.exe (2.6 MB view details)

Uploaded Source

numpy-1.6.2.win32-py2.5.exe (2.5 MB view details)

Uploaded Source

numpy-1.6.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (11.6 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.6.2-cp27-cp27mu-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.6.2-cp27-cp27m-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.7m

numpy-1.6.2-cp26-cp26mu-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.6mu

numpy-1.6.2-cp26-cp26m-manylinux1_x86_64.whl (13.6 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.6.2.zip.

File metadata

  • Download URL: numpy-1.6.2.zip
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.6.2.zip
Algorithm Hash digest
SHA256 e2236a4d514b8b74cdb4aa73093e55de6585a5289a2b7ce5328b9bbd980b212b
MD5 7e13c931985f90efcfa0408f845d6fee
BLAKE2b-256 43263c7c2b24674be1a48d5ef7e2be6559305189a13029255a6944d6889b8b73

See more details on using hashes here.

File details

Details for the file numpy-1.6.2.tar.gz.

File metadata

  • Download URL: numpy-1.6.2.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.6.2.tar.gz
Algorithm Hash digest
SHA256 0b83d96ab79711b548470b7aeee1272c4ba8fcbba6586a67116b566a21ed16c6
MD5 95ed6c9dcc94af1fc1642ea2a33c1bba
BLAKE2b-256 205171f2d77f3af6e95a6ac920425d54233c898cb04a2a2a45faa488f0562d9d

See more details on using hashes here.

File details

Details for the file numpy-1.6.2.win32-py3.2.exe.

File metadata

File hashes

Hashes for numpy-1.6.2.win32-py3.2.exe
Algorithm Hash digest
SHA256 754cd03128a823a2279b701668f477171c3ef69ef6d31f391aa2f4d8084791c8
MD5 b98cc04b20347127e297a99b6114b514
BLAKE2b-256 e248ecb03f8e1b38fbfa052dacf1d1aa6cbd4ba189301c7353facb4641cb7ca2

See more details on using hashes here.

File details

Details for the file numpy-1.6.2.win32-py3.1.exe.

File metadata

File hashes

Hashes for numpy-1.6.2.win32-py3.1.exe
Algorithm Hash digest
SHA256 039f0f076420fbcda81fbe011b162358d85484628ebec574fb99f2bbf3cad688
MD5 0503aa98053340a1a86e0758648e5d75
BLAKE2b-256 4011087b97fa8ee850ec7922d294cdd5ccb400a0f4f23bdf19eb22677813bd3e

See more details on using hashes here.

File details

Details for the file numpy-1.6.2.win32-py2.7.exe.

File metadata

File hashes

Hashes for numpy-1.6.2.win32-py2.7.exe
Algorithm Hash digest
SHA256 5e49756e536b2565a37c22dd8db13398c4ac61fc1f39abf1a0898a737ae56be9
MD5 3757650455a3cb50bf205bbc4c7f4703
BLAKE2b-256 9666233a83d908463463c1c23e703fa40cb9b28649438e893d7c3081d51a7dc4

See more details on using hashes here.

File details

Details for the file numpy-1.6.2.win32-py2.6.exe.

File metadata

File hashes

Hashes for numpy-1.6.2.win32-py2.6.exe
Algorithm Hash digest
SHA256 ba3fdba01264ac57c0228e165b9eec2904a6135a7ba73ba4b345b1238241007e
MD5 941e4b1b65923addf8a7dc21ec7dbb7e
BLAKE2b-256 f23c6b5157c028f834c925871cc2a30ff54368ae5f5e2ad2c45bedf22a85b23a

See more details on using hashes here.

File details

Details for the file numpy-1.6.2.win32-py2.5.exe.

File metadata

File hashes

Hashes for numpy-1.6.2.win32-py2.5.exe
Algorithm Hash digest
SHA256 e5e517ff400f1d25c094abad5bd8c8a41dda3e98236ef4a065a02b24f3f51a5c
MD5 196bac98eebdc953b135a12f0e379d11
BLAKE2b-256 a2fb79ad4e77725c64e19aca63f431ceaf59a84251229fd66edf21099cb73bac

See more details on using hashes here.

File details

Details for the file numpy-1.6.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88f47e2b4da48782e3afee756004f43eace007e00bf0fc84d6e9694cc51c36c5
MD5 4c40e31f0c95bb6b00bb154a0ffe2054
BLAKE2b-256 62c426d4115edd63a0fb5c3c8809ccd90e608a13b6221d7d00f696e9fce433eb

See more details on using hashes here.

File details

Details for the file numpy-1.6.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b4ff1435154f8542ada31db3ad5a7891dc7f5e661c0bd434314523a5dbcaa41d
MD5 1a7b2edf1e2006ec6f463e497cf0d72f
BLAKE2b-256 5da9bf3e87bb9353875f387326b3e73ea11ee14c4270d71fe9e87d01858e85ca

See more details on using hashes here.

File details

Details for the file numpy-1.6.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3fc768caacf13a918c92e4b545cbffb8fe746724ec620a11deae4d7da0ac4353
MD5 b871378b86b4dffae0b48bdbfeb49410
BLAKE2b-256 27e5c7fa8b4908348e004ac1098ecd13d57fc42c692949b94c89da094bbe96ea

See more details on using hashes here.

File details

Details for the file numpy-1.6.2-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.2-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5bf9df60119dc556357592b6156768e0c7e98989fb9f1b6d6ea1b99305b6328f
MD5 4739f87265bf1feb9db684e178e78ac4
BLAKE2b-256 0ca9d5619a0d5c98f915696850c1b5f8566ce82d0ea83bf9834d419c1ceed6d8

See more details on using hashes here.

File details

Details for the file numpy-1.6.2-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.6.2-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fac7a12d248673edb407f5cceac01c0df2f5e275ceebb301bbac7e2fa6f8e5c6
MD5 fc2179f9b44edf59f862df6fa0e49fe9
BLAKE2b-256 e1ef7aa7addd74e79bc3de1b47016c1a9080ffea4880474bd055b5643c67aa18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page