Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to

efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.7.0.zip (3.1 MB view details)

Uploaded Source

numpy-1.7.0.tar.gz (2.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.7.0.win32-py3.3.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.0.win32-py3.2.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.0.win32-py3.1.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.0.win32-py2.7.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.0.win32-py2.6.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.0.win32-py2.5.exe (3.3 MB view details)

Uploaded Source

numpy-1.7.0-cp34-cp34m-manylinux1_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.4m

numpy-1.7.0-cp33-cp33m-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.3m

numpy-1.7.0-cp27-cp27mu-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.7.0-cp27-cp27m-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.7m

numpy-1.7.0-cp26-cp26mu-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.6mu

numpy-1.7.0-cp26-cp26m-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.7.0.zip.

File metadata

  • Download URL: numpy-1.7.0.zip
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.7.0.zip
Algorithm Hash digest
SHA256 04997316b15b9acaa23e1e8b2b9accd087c021c438b92797a68da2ecf9fad07f
MD5 ca27913c59393940e880fab420f985b4
BLAKE2b-256 a6ccd91b5d9a60438c3fabb5b119b67faa0f95897a89b155bf92a42f6da39d2b

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.tar.gz.

File metadata

  • Download URL: numpy-1.7.0.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.7.0.tar.gz
Algorithm Hash digest
SHA256 f4fa70b7edbab65ee6432eb63743f5489f1919c614632b20b2fb45aa7e682ac6
MD5 4fa54e40b6a243416f0248123b6ec332
BLAKE2b-256 e7b80eec6203c783047760db02f86791814c860397a7c79c444ddabc8a2f1c69

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.win32-py3.3.exe.

File metadata

File hashes

Hashes for numpy-1.7.0.win32-py3.3.exe
Algorithm Hash digest
SHA256 1ac08a6f2e001c1cdf3422e2b655c491f21caa8cd8422331fb394884ce4231fc
MD5 4f20740e7e9d31a9d4c1636a931bc3f9
BLAKE2b-256 0002034ecff41b20ec003da9cd74612346b9d49d7313b132934f10e1f7c48f09

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.win32-py3.2.exe.

File metadata

File hashes

Hashes for numpy-1.7.0.win32-py3.2.exe
Algorithm Hash digest
SHA256 bf70472c9d4db9535804d1300d20d3d024f607067c49ec85fe5b1531a487ba0b
MD5 1b12834a53d3ba543d41399c40b5b791
BLAKE2b-256 816820f9cc12548f3de072dbeb693c5c41c9f4af8b8be0f9ebc2170aeb26ae1c

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.win32-py3.1.exe.

File metadata

File hashes

Hashes for numpy-1.7.0.win32-py3.1.exe
Algorithm Hash digest
SHA256 95fbb698222e2a11350439d26cef72c7bc2e246425f6ed79091efbfce0cd27fb
MD5 7c4afe46ba670cae7e6fada849ffd464
BLAKE2b-256 90a4c083366e8d78cc8347ded7c1e6e73ad6dea0e33eff79aad097d5dfacfcaa

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.win32-py2.7.exe.

File metadata

File hashes

Hashes for numpy-1.7.0.win32-py2.7.exe
Algorithm Hash digest
SHA256 861cc7caebf491643fa04f4afa54c82ab1d3e96009d341b7ae18a13126d5aac7
MD5 7ad31a61947cb91915eb0bfdb01d2ab8
BLAKE2b-256 c6d7163ec8ed88a12f6b21bf937abfc57802b436c1cd647ff46cef5ba9fa7ef0

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.win32-py2.6.exe.

File metadata

File hashes

Hashes for numpy-1.7.0.win32-py2.6.exe
Algorithm Hash digest
SHA256 1ed647c416733c20138f578cbeb2d2d0a706142a04b698279dcd26780bd65992
MD5 69b04d57b3d18b266bcce6ecc52d1e06
BLAKE2b-256 d5f3130542e4de8fc1b91c5b9579fddb84edcd93b2b2030eb19167543d31c188

See more details on using hashes here.

File details

Details for the file numpy-1.7.0.win32-py2.5.exe.

File metadata

File hashes

Hashes for numpy-1.7.0.win32-py2.5.exe
Algorithm Hash digest
SHA256 cb9342f5eb9811cd41bc9cfb2b200aaf6ffbb0c75559e2f4f269652a4aa6a477
MD5 05c06781b01326e60ba0921835c44fa0
BLAKE2b-256 c4d0ca3d5c31f6ba98bb37bbd1a0fc7e48c6eedf186b962c33a7113a8efdf93b

See more details on using hashes here.

File details

Details for the file numpy-1.7.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0017f181c7c09d59437cd056228874f028feaf9d5c7f176ab6331b1c359b6093
MD5 874181b56fafd9d47134ec22b20a77df
BLAKE2b-256 d4fb9050def07758560df00e1f81ce08a0f6e4fba49d3b5f2606bfcd9bb2e70c

See more details on using hashes here.

File details

Details for the file numpy-1.7.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0fa2198be41b92870c8f01d1d56c18641590b789308011838a19f25ef8df3c87
MD5 0dbb8998ae4e4312141fd2b2b2236df3
BLAKE2b-256 372de010c183862c0966985d0e0e81ce89aa395d2271024665510152d9216d23

See more details on using hashes here.

File details

Details for the file numpy-1.7.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e4610fadc6cbca1a37286cfab17cb1a093569fb544b629bafacd2291c6ee863a
MD5 ed2b95cf9e881f2c09aec8a5f6b637d5
BLAKE2b-256 86f130661a1a2366a01e1dcade658df0f64825660f04c556caaa65ebf71aa904

See more details on using hashes here.

File details

Details for the file numpy-1.7.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9768d15bee73221df588de11296156346cd8448294f37bcfecc011f5bc1f278f
MD5 329e7a432b28e11f6c8338268896fdcb
BLAKE2b-256 00ccb160198ce598e928fcef668fa6a96f064f91b9c73a4ef96bd25c9a0df084

See more details on using hashes here.

File details

Details for the file numpy-1.7.0-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.0-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e6a369aedaf373770ca8f00c417ba393819c0d27d27b1ef0c27aa615c91ce2ee
MD5 b2ac1f8819d2feaca46c627d3bc6c349
BLAKE2b-256 8bc7eedb050859dbb10e1882b8b965e66347aeae7cf62a07fe22721986feb091

See more details on using hashes here.

File details

Details for the file numpy-1.7.0-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.0-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c16895ce17df690e48b5e45c6253fff42f881c4fa7cd058acaca57ee5fd97a5c
MD5 bac6117c47979124d606d42b3fc8ed42
BLAKE2b-256 b53c40415c6827a2a9401ba8685fbb95434cc17112719a17a0dac18cd08a6593

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page