Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to

efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

This version

1.7.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.7.1.zip (3.1 MB view details)

Uploaded Source

numpy-1.7.1.tar.gz (2.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.7.1.win32-py3.3.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.1.win32-py3.2.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.1.win32-py3.1.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.1.win32-py2.7.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.1.win32-py2.6.exe (2.8 MB view details)

Uploaded Source

numpy-1.7.1.win32-py2.5.exe (3.3 MB view details)

Uploaded Source

numpy-1.7.1-cp34-cp34m-manylinux1_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.4m

numpy-1.7.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.7.1-cp33-cp33m-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.3m

numpy-1.7.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.7.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.2m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.7.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.7.1-cp27-cp27mu-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.7.1-cp27-cp27m-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.7m

numpy-1.7.1-cp26-cp26mu-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.6mu

numpy-1.7.1-cp26-cp26m-manylinux1_x86_64.whl (14.0 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.7.1.zip.

File metadata

  • Download URL: numpy-1.7.1.zip
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.7.1.zip
Algorithm Hash digest
SHA256 5723597fdc0ebe564c711de8547173b727a7c551424973ce8c3ddf94968f163c
MD5 9a72db3cad7a6286c0d22ee43ad9bc6c
BLAKE2b-256 01a28feb022d5c1bd352f0dbae2f2ca1573f92d91565a084149f9014d9e4d10f

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.tar.gz.

File metadata

  • Download URL: numpy-1.7.1.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.7.1.tar.gz
Algorithm Hash digest
SHA256 5525019a3085c3d860e6cfe4c0a30fb65d567626aafc50cf1252a641a418084a
MD5 0ab72b3b83528a7ae79c6df9042d61c6
BLAKE2b-256 84fb5e9dfeeb5d8909d659e6892c97c9aa66d3798fad50e1d3d66b3c614a9c35

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.win32-py3.3.exe.

File metadata

File hashes

Hashes for numpy-1.7.1.win32-py3.3.exe
Algorithm Hash digest
SHA256 b5c1eb119b4480157e842b6fbf144c3e3a9b0a9d5f9e342a7b393ed149b5de8f
MD5 6519c7bb198d0caf2913469883a63be9
BLAKE2b-256 4f1ce540639796898d302c5dfe1154fdb90057212912667652bd0d0d8b336868

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.win32-py3.2.exe.

File metadata

File hashes

Hashes for numpy-1.7.1.win32-py3.2.exe
Algorithm Hash digest
SHA256 e22a328ac5a55ce65aebf3f8bad34d5867949f93ffe5c6b70749d9e8260086ff
MD5 651465cacf107d254ddcefcebb47064d
BLAKE2b-256 aeab0b99546273b83ed793025eb0af018f9f2ec83cad4b12c24ae590b3aef09a

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.win32-py3.1.exe.

File metadata

File hashes

Hashes for numpy-1.7.1.win32-py3.1.exe
Algorithm Hash digest
SHA256 3e2419b6c28f61097121de45287e6ee04de01a687d485babffc61fba4d819533
MD5 5c9ebca6a0f513f1f1a34e150575d715
BLAKE2b-256 1586268d853c8470a36aa019beb71f2d0a994cff2e3ed0d49b3773d334c720f2

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for numpy-1.7.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 443c7b10acd0588d5a88e8d9eb7677d1c78ce9c59df4e806fc2e90dedee1e41d
MD5 dc11133ce1ce90ceb8f715e879a96e5f
BLAKE2b-256 5fb07b7f8b737c1480346053d9a07c8e9f17e43b0956dba726e22d828b5ebdba

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.win32-py2.6.exe.

File metadata

File hashes

Hashes for numpy-1.7.1.win32-py2.6.exe
Algorithm Hash digest
SHA256 86227025acd2f6ebde9cdc16924b7fd5678144e758553f94cb049cc0b57ca040
MD5 1b6fd69c28336f399e803a145df29c3d
BLAKE2b-256 aee04211b86f80f6005e0d334a5399785d10109ba44479b72c4b0cf6212d5746

See more details on using hashes here.

File details

Details for the file numpy-1.7.1.win32-py2.5.exe.

File metadata

File hashes

Hashes for numpy-1.7.1.win32-py2.5.exe
Algorithm Hash digest
SHA256 775c2237dd325e7b221093ccbcb3e3dc2f079fd6b5446a10c9cb49a5dbc364bc
MD5 122d3fd5b78b7c36d4f57863391e2fb0
BLAKE2b-256 762db146fc2f99df16102cbf5c2746c40c366024cb33b250d2b65defeb89df72

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e991ae9b75bc65f234bf47a9d534aec855a644b562855d03ad9b5afe55f5d75
MD5 a55dc688c2b78e9b75b73c34febc2ffd
BLAKE2b-256 fac69c9cff4e105de3f27e112a260c45959ba5bfd959cba0954d5d5ad2583603

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01df6e11926ceee50247b3c49807c880418a93cbc4a0c641788dacf6449ea6bd
MD5 b2f5678d58b8ab459eced96bcbaa63db
BLAKE2b-256 6e74f57df6dc831c040f6a120095f663268915f903e9f332fd67d48cffabdcdc

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a7200416c446a69db0998d92435dc8aa1eecfe3037db70833f114017b3eb53b2
MD5 5a7dce5b78caa4b9e7c27f977fc799c4
BLAKE2b-256 a315f6e37dd6aa9719902850b3af30d3783e5019c920afbf09a4c999ff15cecf

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af07232e79a82c744a93e2ce9df4780444d2f6d03afc066d4394642316563b27
MD5 717efd1ef90702f6d1c6a9be84402978
BLAKE2b-256 afdac827c0d3b2aa7533b81292cad566aa72a1d621d3b899f284a0704b767213

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3867aa01134affde1aa3f72027279bbf412c19ef1cd3ad18531f8a3d2c54aa60
MD5 b6b478f8c4c291acf60f730872f59c35
BLAKE2b-256 bdb12956bb8d525f1693d2550010a90c59b6c98dd23adac5ee5f4420e3e09327

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38759cfd7b09d5de6c9f3f345f0d28aa5b58749df719dc30618cfccb67ea0760
MD5 8596579d66a1ec7ea57fa227c03983fc
BLAKE2b-256 979cd30d3e8a188899069a36bdb4e1e8e30deed8d0ea62f50be08a9568c898be

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eec11ed6784bb9e13177dd29850fea856896439dd2f40741caec665038aece50
MD5 686eaf3ffa083f566ea098740ca830ba
BLAKE2b-256 07d7926031f1c5fa59b7f81382feed7f1fc44213a3e1bda4f47bf5ea5d76e56f

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 005fa041bf2b8a557323a4edf242ae807d420006b3f1c571f4bdb86a27877eb3
MD5 9bb57d17f6e8cba47eab914ce88a34e4
BLAKE2b-256 d2cfcae02304d5d086b681f7cd8a472aeda1765de40cd7b453cb9bc97900d630

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3f55d2832ce019b78fd7e9aebd961cc646fc2d2644665c633b6235fc6290acde
MD5 b3c90ce3a000a76e90b6ba93d2a0e737
BLAKE2b-256 e466f5c1a824191bfbcbdacb339c6fcdf51b975542ac2134e133568dd50aa6d7

See more details on using hashes here.

File details

Details for the file numpy-1.7.1-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.7.1-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3cd3ce5ff3161bc46fb3cb9442189d78f946c43851738fb1b1eaac0d79ff905c
MD5 df535699627de550c4521519fab2bcdc
BLAKE2b-256 6002947f5a823b06100b6cf7cb8c9ba30dec9a304661306d888fffe9c0e0930d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page