Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

This version

1.8.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.8.2.zip (4.3 MB view details)

Uploaded Source

numpy-1.8.2.tar.gz (3.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.8.2-cp34-cp34m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.4m

numpy-1.8.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.8.2-cp33-cp33m-manylinux1_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.3m

numpy-1.8.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.8.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.8.2-cp27-cp27mu-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.8.2-cp27-cp27m-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7m

numpy-1.8.2-cp26-cp26mu-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.6mu

numpy-1.8.2-cp26-cp26m-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.8.2.zip.

File metadata

  • Download URL: numpy-1.8.2.zip
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.8.2.zip
Algorithm Hash digest
SHA256 e9fd7465ec96b8e135278f2b016f0122c12f18d356c1279959e7257fe99f6d0e
MD5 082008bc89e27021fa9fbc59da18784f
BLAKE2b-256 71cdc04c155da350da0662dce04d3758a5e7d42484c36ec83452aa8dbc59fedd

See more details on using hashes here.

File details

Details for the file numpy-1.8.2.tar.gz.

File metadata

  • Download URL: numpy-1.8.2.tar.gz
  • Upload date:
  • Size: 3.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.8.2.tar.gz
Algorithm Hash digest
SHA256 6d487fc724780d66746bde264ea71f5cd77d3a39e52ee2b073dcaed63bc669db
MD5 cdd1a0d14419d8a8253400d8ca8cba42
BLAKE2b-256 67ab41e4b42e0519d868347d2cf1051a05ce0170632039c053dee8ffe8b43b0b

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 952ed819b411bbf830aef61ce30ab8937ad5ac63a0c7166d1743af463dd38d71
MD5 528b2b555d2b6979f10e444cacc04fc9
BLAKE2b-256 337d46d8905d39f462e0f6d1f38e1d165adc2939b9f91ca800e1cba8ef0c0f24

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf678f27b2f18f00a045f81d1d80a27bf058d190e5baa9acc1af917481c53321
MD5 399ace641d77bc1324864921bab63625
BLAKE2b-256 276d73224855c49abf8df22d347c13ee5f100f0b9b3bf3436d92d07b3ee414a6

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3db7b3cf424eae4dcfd0cc2d45c51af8ff41c9112685f0e1c9ae86dd05afd411
MD5 7d35d88c2ea8fd2032477d76c3e296f6
BLAKE2b-256 9cb18544bafcbd84535c26164d6f196f4535ecdfb514c0612e62b6e132cff0d0

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 664800623cc68176ea02e23302536e2e75a0f5d3b70e22dc7ca61d67d2b4b630
MD5 50408059e6930e8985011260e6c592c7
BLAKE2b-256 c3293aeb193406d7e52cda5b1fafa5b6624ab99bb480c2ce65484b602f4d0cb1

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 860afb63f154777e69908b9daef7d10929f8257526aee9553f6548ed962cd5e7
MD5 8f64631e257598f99f3da6ec09a5e8bd
BLAKE2b-256 6e00667a21ff386d4cc6a77bf16d51623dbc9315a50204f6ed01458b10d1fd34

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ee209ac66442eb5b63bb180a281678ef8204e0b0bb45b83269e13b5158759eca
MD5 3ccf5c004fc99bd06dd443de80d622e6
BLAKE2b-256 17f3404bc85be67150663024d2bb5af654c7d16cf678077690dda27b91be14eb

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99699e3e7df919fc6bbdfbdbc2ccef86a955c6d782f1b284e656ae735317c1b1
MD5 112a105fe8153e754d8e50e84a7669c7
BLAKE2b-256 1e1f42ec033fe7522ea5e16352b5491cca5d08bd05fd1d19b5be9dd9d2a3a15d

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3fd6e20ea9550ceb2e9ebecba35517e855ea7b4f08441f51b2731d4a26663f0a
MD5 92b4ca6a40ab982dc34ad8070c175ba3
BLAKE2b-256 d82bf47ceb5e782d4e8e30f11cbc354261fa06d335cf318e1a7494929a0539cb

See more details on using hashes here.

File details

Details for the file numpy-1.8.2-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.2-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f9ab980aa9d3d90f1d072fc8c53a6df2e5b2eedabb38fad42d844152940d0fdc
MD5 fa472f4b7472c45cbab5419914ba6efd
BLAKE2b-256 87c169515470a99455dcab7b060bd8697bf913d6266ab89b764772eaeff35743

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page