Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

This version

1.9.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.9.0.zip (4.5 MB view details)

Uploaded Source

numpy-1.9.0.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.9.0-cp35-cp35m-manylinux1_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.5m

numpy-1.9.0-cp34-cp34m-manylinux1_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.4m

numpy-1.9.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.0-cp33-cp33m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.3m

numpy-1.9.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.0-cp27-cp27mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.9.0-cp27-cp27m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7m

numpy-1.9.0-cp26-cp26mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6mu

numpy-1.9.0-cp26-cp26m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.9.0.zip.

File metadata

  • Download URL: numpy-1.9.0.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.0.zip
Algorithm Hash digest
SHA256 a01b100a797f51b6783c3eb0ece2ee2a0678fdd1695c985c8da2427d62e23562
MD5 d4789bcd8305b5efcfefb3ed029dd632
BLAKE2b-256 a0ae16f28bfe7cbbb08194a859ece5271ba0528f770c2e6964cfc68e8e15de23

See more details on using hashes here.

File details

Details for the file numpy-1.9.0.tar.gz.

File metadata

  • Download URL: numpy-1.9.0.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.0.tar.gz
Algorithm Hash digest
SHA256 2745b1d64445da3c29a34450320025c11897ae4af77475f861966e98b2cb1a0f
MD5 510cee1c6a131e0a9eb759aa2cc62609
BLAKE2b-256 d4e51c9abc4202d62faadf1db48f5d547845ad1cbe66c1a5e0ed4542edd218a0

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3536a270d87e2137eec613aaaa07a21ee080146e076ac13892d7661559bb3aca
MD5 4cc7f431e639461f4e2a09f12850a9b3
BLAKE2b-256 f4694ae20782ac53363af7e153bb902d83d861a6e50fec4dc1e71d86bc5747d4

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 54e76ae22f5844dddcf01785243c83366915ffcd74174baec8c33577925dd6bb
MD5 7f3759341193fb6d0144dd8639c04a63
BLAKE2b-256 eb16bfd0cb4601d7f8c76b64a5f69a0bcea8884c576941a1a53b807a81a839eb

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f658ff8d374748e41b5b24d9a4e40d3c8ae789a0c104620c4fa76864e792946
MD5 b4962c57999b42e1cb6a78ea8fb913f3
BLAKE2b-256 f5defe3e91ff29a2c477c83297061d64ed2ad5f80b436513af9892557ce9a683

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a92ecb1c4db742b9a74992a4c4d54bbcb0eefcb3ff625f73e9887fbc9b19576b
MD5 2242425d5bb94000cdd911f73e952553
BLAKE2b-256 10dee75311f6f9d9785de61d0124a32aa1c5c93379a0969d9a1f7c394a73e691

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b7450bea8ebf8f9eaaa2c12daf34b313fc5e492bbb41a99e4890e2bce722bde
MD5 063ea9e4adf4e419e007ba79c8333f7c
BLAKE2b-256 bf64670f149b26ae2879bb6eb7b24f2f995b1a0a7f13dfefd13a595d7e30296d

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2eba63ac2907d76a02344793aac9ee6466082e11eed83a1e31b8d7bd61da0bd
MD5 3e9e1f02a6c48897ca296b43eee11e18
BLAKE2b-256 7a0a4f945277a909588dd7aed644f5df77976d69b712ef5df2de20afd64d5f16

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ff64c4a6d588ebacfbc50cc5604637cdfdc37fa03ae3e32ab947972d26b12429
MD5 dd83a98d663d73846380d28d077287dd
BLAKE2b-256 2aec44cb3bf521b1ea97ea4fdc1c5e02ef66da9d27ab9b9985ab8d122ac0c73b

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0ed614e0c426a7dad2bfa642d7a541868560648635c62108ace45bfc0b814f7b
MD5 d81b58e50748c62d05b6c7d1853cf261
BLAKE2b-256 e4b01466a7b42e07602253a301773aabc301d726714907f2e779c16c59f76c4d

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f73d6f7339216c382ff512d0c51a26830b0c4e5c1dc157bcb1780cf6ef866ab1
MD5 279ff34f9dd3d9be6ac5ece81d0809af
BLAKE2b-256 c1b95d3488d6c90155c0a8016d455493d9cd9e66d7735e6ef81ed962f9fa71bb

See more details on using hashes here.

File details

Details for the file numpy-1.9.0-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.0-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6cd9802d9d67abc95c649fff6a56ddd2e9ca060dc9de3d63697f18b263af53fd
MD5 d50e769c5cf718259125963669c4f021
BLAKE2b-256 eb96518d9972d1e6a406e742daaeaa7c5bea0da27010ea7c77d16f8e268899ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page