Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

This version

1.9.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.9.1.zip (4.5 MB view details)

Uploaded Source

numpy-1.9.1.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.9.1-cp35-cp35m-manylinux1_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.5m

numpy-1.9.1-cp34-cp34m-manylinux1_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.4m

numpy-1.9.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.1-cp33-cp33m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.3m

numpy-1.9.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.1-cp27-cp27mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.9.1-cp27-cp27m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7m

numpy-1.9.1-cp26-cp26mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6mu

numpy-1.9.1-cp26-cp26m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.9.1.zip.

File metadata

  • Download URL: numpy-1.9.1.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.1.zip
Algorithm Hash digest
SHA256 2a545c0d096d86035b12160fcba5e4c0a08dcabbf902b4f867eb64deb31a2b7a
MD5 223532d8e1bdaff5d30936439701d6e1
BLAKE2b-256 fc5487b79129ed1c2f5a6a5ee1b9d1b0492f422305ef75da16843175b91488fb

See more details on using hashes here.

File details

Details for the file numpy-1.9.1.tar.gz.

File metadata

  • Download URL: numpy-1.9.1.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.1.tar.gz
Algorithm Hash digest
SHA256 0075bbe07e30b659ae4415446f45812dc1b96121a493a4a1f8b1ba77b75b1e1c
MD5 78842b73560ec378142665e712ae4ad9
BLAKE2b-256 413945791d98f1c82789b96d7bdc36f34792d0106b44680fb946d5de9cd5c979

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5ec2d02a2e03e51ee71c0a1d653b725c1f0f4dbc0d2566592d09c75dbd763ae8
MD5 de290fdbd4230447bda8510c1a7d7459
BLAKE2b-256 958b2fb2db1e33fd7e254dbff2a3a7a9b69fca3b44ffd90f79a3d18843f0922f

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e30fcbe20a9264c849175b581d6300a27666a8ddd48b205245937ca010a63423
MD5 d5da1a03183e6abb16531d005094d0b2
BLAKE2b-256 0f6c66a22a11fada8679e2825b45e0f892a56d8c6f0c4e97a329456079f23f45

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 388958ee6b759d7b1739efef7ac6578e425e28cd783f0da52808debe27547d8b
MD5 db34cba02448c02bc6935d1473a0965d
BLAKE2b-256 a05d6e639acac6f6e0a36872d126b512b5e37c855cc1527c2e27bd960508dadc

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2b1a26b6ea6dbaf755241f7aaf939f246e8ca02fae74b720d3074cc992c6299e
MD5 2e6080a1eff8f483b5c704619d456016
BLAKE2b-256 73de96a2bb81266dde6c2810cd30c54a312a8288d41199aa23475e0350f3d0bb

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0b07baf08231e1bae5dd4f07cde3996dcabb18f6c5b326936a2e184d142e7afc
MD5 5efbc811a9148cbdc019e8f3dabe6bc1
BLAKE2b-256 4544ec7440a56bf54c52542b3efbf9c975b96a2072c843caea1b762c8269e30e

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6a20356a4829ff67dbd73c91c763b9cf20aed240f6dd1633cdc9de1bdd86ea6b
MD5 f3ae60e3ab0af99e6b3b1ecd204ddd01
BLAKE2b-256 360aec198d5d9d707c23626591e368289ff24d27a6f43348f777b21f29bb8697

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 74cb491e6a11e8438a70ff7c12d3d2c629c8fb212a08ab47373644c69f867fd7
MD5 ca3184664c7aa6335034d26d565474d4
BLAKE2b-256 c8f16f0775bc5b683d21fe4760ecbb20b808b7e47e52128959f0dcf8ab5820aa

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bbc279327b218ec3a40cb6ebd3efb51cbdc14fe6b22614452eb2fad369224089
MD5 22626cd1fabdd5f8d1fa1b15f71d1684
BLAKE2b-256 c15863d7c7784486e56930b22c38095954a387c751edeb6593e743644bb083ad

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33c08803ce53d44472050f3b5335f46281111dfcaa755b6b9a9c5a494443b2dd
MD5 25a58902efa16bd4d66197cf636932a5
BLAKE2b-256 83bc4368f009c063a4036fb9784c3eca325ee5b35216d3900c238ee524ba2765

See more details on using hashes here.

File details

Details for the file numpy-1.9.1-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.1-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e7e785b7b4e19d7325a3f96036a4a25c9460c65f9a0b0341837e855e939b9d2c
MD5 d5e6ce5ea0ba39012cea996f075c1a16
BLAKE2b-256 8d12ff583246b0dffeb0ee75dfc71d0cb0188311ce250f1703838aa80dd73f1c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page