Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

This version

1.9.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.9.2.zip (4.5 MB view details)

Uploaded Source

numpy-1.9.2.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.9.2-cp35-cp35m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.5m

numpy-1.9.2-cp34-cp34m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.4m

numpy-1.9.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.2-cp33-cp33m-manylinux1_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.3m

numpy-1.9.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.2-cp27-cp27mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.9.2-cp27-cp27m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7m

numpy-1.9.2-cp26-cp26mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6mu

numpy-1.9.2-cp26-cp26m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.9.2.zip.

File metadata

  • Download URL: numpy-1.9.2.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.2.zip
Algorithm Hash digest
SHA256 e37805754f4ebb575c434d134f6bebb8b857d9843c393f6943c7be71ef57311c
MD5 e80c19d2fb25af576460bb7dac31c59a
BLAKE2b-256 bbb15a87c6cc7ab5201ad0552a5f84e194f822693ea59b0b97dc77a18f04554a

See more details on using hashes here.

File details

Details for the file numpy-1.9.2.tar.gz.

File metadata

  • Download URL: numpy-1.9.2.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.2.tar.gz
Algorithm Hash digest
SHA256 325e5f2b0b434ecb6e6882c7e1034cc6cdde3eeeea87dbc482575199a6aeef2a
MD5 a1ed53432dbcd256398898d35bc8e645
BLAKE2b-256 cea8bce42709c423f044bc60038922d81ac0be5042d025ea9e3d4734341eef83

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 776c4df79ffac22801eb17f1119088f56b652ed01b41deefe14911d66d95a04d
MD5 7e859a7804467882eada09f724d3bae4
BLAKE2b-256 a0436dbb2f0d89c98f90e9851cbba712ff8afbaf699b243447566c50aa56420c

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 811dec937131a554e0ace8dfa6b0919ae1b47e376901eb65bf9b1f99f35efbff
MD5 8b534c57e23f05bda86603c6a0a96ef2
BLAKE2b-256 cbe0e8a2ae5130db93472fac4dff0211b5fb4f580b0dcd399584290c7664d5d0

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c8ec2900b86d5579023cfe0ae3d6211253e3812171b718c416c584832b439c8b
MD5 1df533f72f8c9eab956017da349579e5
BLAKE2b-256 e1153b6edf45429063b233a296dea9e5ab408152168d395033006c8b7799944e

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9f37f271049451033d3458f80f411ff1f59177ffd6cbb10a3ffc80af84da2149
MD5 46c2f8a57776808b36068f282507280c
BLAKE2b-256 0539673f4e48993a397f64c8e8798e8df26446027194346a013af556eeac9093

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 25bb6805253e390ca85d3fc990be0ec6527d19e0968de1af7accc5c8e45d5c72
MD5 d2d8fb9161e662e0b04c32458b2e1ba7
BLAKE2b-256 c7c7178ea881b18c27f60a6765aa4ab964a604d7aed86523b4e603a216c3d03c

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ad83e22634e1a34a00d1809a0bd69d04eca68d5c975a1f298c6cead191420071
MD5 296f576bb648b8195b379b0bf39791ce
BLAKE2b-256 d1e4268d113fae408ce7f49f4c9c9cacc543d85a29a09058c496f38073fbdbae

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 425cc2d1f8326e281db328fdddfdbaaee8c907c375cbe9664cc85276f4a05db8
MD5 0da340e64f1aa9736fbef6000beea7ed
BLAKE2b-256 474634a876b2ef1e9048df8c678a246aae8c727f025fd907451b6a75dd0cea1f

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5026382cc5feb674d13e13da6f4b1fe6db800be9887cc7e93fb8a4db2d11d9bd
MD5 4e1ce604b8a619e04fcdfdc32dab2d9a
BLAKE2b-256 fd4770fe002303661db1a87293244c15ac5d066ed0c2b352ac1ec5f739318f63

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 247aa9efcc1a279b7251a9e9e6d95c6d1e860e461b9bec502765e26b4e9edd1f
MD5 13aadb18f61bccf3763c2180a35eceea
BLAKE2b-256 b28493e97806357fc0bdfe4a9fc88e35f2e47bf94dbd0e062891b7e2a6984213

See more details on using hashes here.

File details

Details for the file numpy-1.9.2-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.2-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b7a2439a390f702de036597c0dee92fb3333a7f9b4607aa256a21f087297e936
MD5 2f0025f9840bb87095db1e156350e970
BLAKE2b-256 6d6f84d83f96e445fe814d3cc593a1b0b0f1e17c3a33a0577413037058574973

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page