Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.9.3.zip (4.5 MB view details)

Uploaded Source

numpy-1.9.3.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.9.3-cp35-cp35m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.5m

numpy-1.9.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.3-cp34-cp34m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.4m

numpy-1.9.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.3-cp33-cp33m-manylinux1_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.3m

numpy-1.9.3-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.9.3-cp27-cp27mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.9.3-cp27-cp27m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.7m

numpy-1.9.3-cp26-cp26mu-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6mu

numpy-1.9.3-cp26-cp26m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.9.3.zip.

File metadata

  • Download URL: numpy-1.9.3.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.3.zip
Algorithm Hash digest
SHA256 baa074bb1c7f9c822122fb81459b7caa5fc49267ca94cca69465c8dcfd63ac79
MD5 e570f4e6fcefdf76c9acc5c12b0c90f3
BLAKE2b-256 d9da8f6fa7d5d76fc78c11fb56a48dfb51d6321bc1e7631e5ad32c228284005f

See more details on using hashes here.

File details

Details for the file numpy-1.9.3.tar.gz.

File metadata

  • Download URL: numpy-1.9.3.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.9.3.tar.gz
Algorithm Hash digest
SHA256 c3b74d3b9da4ceb11f66abd21e117da8cf584b63a0efbd01a9b7e91b693fbbd6
MD5 7c321721ffc62c25bc854b8addf42f20
BLAKE2b-256 e93e24ec13b144c39874fba69f165b26b7d42a172149bf7ffaf5cf8ffd3815cb

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 df659e5e7179f6876bc881519c88567aa2724731d6c2b6521b43e57828b4da88
MD5 d059bda6c3aee14842db25477788717b
BLAKE2b-256 4cbb6a16ab39e625947f653774bfa462d3678d2c84c3075a8c9db71bfaebab05

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 09a43bc1daa333bc402d93d44de614077689e1e9b8c1dda951f20e1f1f8ac29e
MD5 32c064914bf2249950fce16ba67fefc1
BLAKE2b-256 945e867f54373e96bb67941aa7f194394ec774d7ab3aecb77908b94b949ab613

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bff36563f9d6a06a81ae232f49d2946c84c05e391a7dff057496033c79507860
MD5 e1130c8f540a759d79ba5e8960f6915a
BLAKE2b-256 fc1ba1717502572587c724858862fd9b98a66105f3a3443225bda9a1bd16ee14

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ad2b8bb1fe6df8aa55ef3891a65cce2e1f4740abeb324f5ddbfc905468f4e7df
MD5 16a35a1c687cdfb9a5dbdf982bfc10fc
BLAKE2b-256 9bc312ddc43ba2e8c72c03dbab3bcf757c60571fb48ea991bfa522314d3b5aab

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bf63d472a25bf5db9a95af6060904aafa64808ddf83ee91e479b21cd84442c5c
MD5 66f7e81a560bfe814c260dc39308d8e6
BLAKE2b-256 b79a239daf3f18b15993b29fb2779b04eb8564cc2d64ca4b9c4571b0f8f25c4b

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a312ba529af01500d7a06f2a7d2c1fb19b82547838cdef10d83411fdf838bddb
MD5 7c6809ed47cda63de2b2112a0c08f41a
BLAKE2b-256 f28eab4405734e2e063dd9f9211e8fc06c41a8bd1522b09d4cce36d9debdcf3a

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4d6992172ff788308dba89dd950713c1989df5e7895f4a5a64af23db58186945
MD5 039bf0fc94df838878f40c94e12fb1e7
BLAKE2b-256 700744a187b58518614be20ccb63a72db99c2568e9ca0e1c9b0236960b68cb9c

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ac559fc2b7d77fccdef375ea920bb92b38ec759e6c89a638eee8d479a31df98c
MD5 52f13871271a8ed996dc3c207f995e8c
BLAKE2b-256 16554a788daaf048ad86af3676b51256ec38674281cbade9faabbe4585d11b1d

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da1563ede37a54c2bd5ab3cb3def94c386f4c7482242cdb7921c22756bbeb461
MD5 953f53fe590baf8643fc9676f23f8c5f
BLAKE2b-256 f863eca0990ba29244de118489d82ab7511d72cc02bf8ae81ca1aa2a4774d087

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2c167bccb1ecc100ab803aaade54ae8586f00d2512b9ba9474b07c1f7370d68c
MD5 7c2c32a0b836c2e936d508b029b8ef27
BLAKE2b-256 dc0a41db7ee78191805dd8abcce96d4dd80076a71827197c86567efb35aba61e

See more details on using hashes here.

File details

Details for the file numpy-1.9.3-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.9.3-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 19828d06c965c7296da055c864cc549352ffa3bd8cb39058f0f410df17aa27cf
MD5 567cba43c8be52aba4551e4e60e86c78
BLAKE2b-256 df39823b0cfa107a7728487fb89a5eb070233affc61b31958ebf883216205f50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page