Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.0.0.tar.gz (18.3 MB view details)

Uploaded Source

Built Distributions

numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl (16.4 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (21.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-2.0.0-cp312-cp312-win_amd64.whl (16.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.0.0-cp312-cp312-win32.whl (6.1 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl (13.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-2.0.0-cp311-cp311-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.0.0-cp311-cp311-win32.whl (6.4 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.0.0-cp310-cp310-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.0.0-cp310-cp310-win32.whl (6.4 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-2.0.0-cp39-cp39-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-2.0.0-cp39-cp39-win32.whl (6.4 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ x86-64

numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-2.0.0.tar.gz.

File metadata

  • Download URL: numpy-2.0.0.tar.gz
  • Upload date:
  • Size: 18.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0.tar.gz
Algorithm Hash digest
SHA256 cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864
MD5 a180aaba9982c6e15da6db62dab5eb4e
BLAKE2b-256 0535fb1ada118002df3fe91b5c3b28bc0d90f879b881a5d8f68b1f9b79c44bfe

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9
MD5 cbf151633948e90c93dd988777750961
BLAKE2b-256 5f9ffe311331410759da4d441d6d08dd54b80065f4946374e817611f4f9c527f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad
MD5 c39f0ab6e07d42708550899951b852b8
BLAKE2b-256 801a354ad1a6627dbac1d4167591db51ce59ed972064bfb9979f9a37a7782900

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a
MD5 99186fe49ac7931d3e92e8993c2faa92
BLAKE2b-256 186610c93572d97b410f71ad9b59b20f2a23dcdd871f025bd5376a732b408520

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6
MD5 5021eb5e225bff3e05a38a565daf8852
BLAKE2b-256 9ae097d246e03f9597e7275dc2f0b24f6845fbb5380ef0fac330cb1b087229f8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 16.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df
MD5 22aabdfd85ed34f02a7cdacff399c5d9
BLAKE2b-256 ad9c4a93b8e395b755c53628573d75d7b21985d9a0f416e978d637084ccc8ec3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.0.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54
MD5 8a0dbcd919d1d959f1846a00ebb05162
BLAKE2b-256 261849f1e851f4157198c50f67ea3462797283aa36dd4b0c24b15f63e8118481

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9
MD5 f7581ebfe0c9d4ae4f3b6ea09c19eea7
BLAKE2b-256 004c440bad868bd3aff4fe4e293175a20da70cddff8674b3654eb2f112868ccf

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95
MD5 249047dd7255a5fcf5c45614ba211e10
BLAKE2b-256 df164c165a5194fc70e4a131f8db463e6baf34e0d191ed35d40a161ee4c885d4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a
MD5 82cba3915234f8018fd754ffc45e95b0
BLAKE2b-256 2895b56fc6b2abe37c03923b50415df483cf93e09e7438872280a5486131d804

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2
MD5 4153b50c1a3647ca58f1084fcaf3e4c6
BLAKE2b-256 bb311f050169270d51ef0346d4c84c7df1c45af16ea304ed5f7151584788d32e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e
MD5 2231ecbb380c70ddf462e9671d06612c
BLAKE2b-256 a09761ed64cedc1b94a7939e3ab3db587822320d90a77bef70fcb586ea7c1931

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2
MD5 029703d0ff0e96c603c91f611926ef17
BLAKE2b-256 3fab1dc9f176d3084a2546cf76eb213dc61586d015ef59b3b17947b0e40038af

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85
MD5 b0f26e8728523d716f5165953b35244f
BLAKE2b-256 feec8ae7750d33565769c8bb7ba925d4e73ecb2de6cd8eaa6fd527fbd52797ee

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f
MD5 1c9519c5e6a0c5a99715e51ac3b7c932
BLAKE2b-256 b7c8899826a2d5c94f607f5e4a6f1a0e8b07c8fea3a5b674c5706115b8aad9bb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c
MD5 9ff8be4f581d86b2f181fe905491b19b
BLAKE2b-256 9b0f022ca4783b6e6239a53b988a4d315d67f9ae7126227fb2255054a558bd72

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.0.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f
MD5 aaa4b435d29022ceacb4e3dcbd43d11a
BLAKE2b-256 fa46614507d78ca8ce1567ac2c3bf7a79bfd413d6fc96dc6b415abaeb3734c0a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f
MD5 dc435751cb926f53a9fc457f35146527
BLAKE2b-256 cc8b9340ac45b6cd8bb92a03f797dbe9b7949f5b3789482e1d824cbebc80fda7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995
MD5 98c570b79459342c219590c5af38d527
BLAKE2b-256 1b54966a3f5a93d709672ad851f6db52461c0584bab52f2230cf76be482302c6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581
MD5 d065256e02a1d410d0db2577bb8fd9a4
BLAKE2b-256 d1272a7bd6855dc717aeec5f553073a3c426b9c816126555f8e616392eab856b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4
MD5 e96c2af477c970c8ff50ecb5d1cf754f
BLAKE2b-256 cd37595f27a95ff976e8086bc4be1ede21ed24ca4bc127588da59197a65d066f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871
MD5 eea8146c5dc2a306333bfea1f01f7a37
BLAKE2b-256 4fc142d1789f1dff7b65f2d3237eb88db258a5a7fdfb981b895509887c92838d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609
MD5 6aea3e8589e33349b8170524af5a2e44
BLAKE2b-256 014a611a907421d8098d5edc8c2b10c3583796ee8da4156f8f7de52c2f4c9d90

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289
MD5 a006b081decba286a321de67a1abe246
BLAKE2b-256 774dba4a60298c55478b34f13c97a0ac2cf8d225320322976252a250ed04040a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5
MD5 f390e03564df5ea37a97ac10cf0cbb00
BLAKE2b-256 5852a1aea658c7134ea0977542fc4d1aa6f1f9876c6a14ffeecd9394d839bc16

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ed08d2703b5972ec736451b818c2eb9da80d66c3e84aed1deeb0c345fefe461b
MD5 cff9da6b9fe5ad3b05dd3526dff00ac2
BLAKE2b-256 9cde7d17991e0683f84bcfefcf4e3f43da6b37155b9e6a0429942494f044a7ef

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cee6cc0584f71adefe2c908856ccc98702baf95ff80092e4ca46061538a2ba98
MD5 cfe7420d294c583b90cfe07b730136dc
BLAKE2b-256 8bc4858aadfd1f3f2f815c03be62556115f43796b805943755a9aef5b6b29b04

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 acd3a644e4807e73b4e1867b769fbf1ce8c5d80e7caaef0d90dcdc640dfc9787
MD5 b00832f558669aacf855c4f5e9cf31d1
BLAKE2b-256 238aa5cac659347f916cfaf2343eba577e98c83edd1ad6ada5586018961bf667

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4c76e3d4c56f145d41b7b6751255feefae92edbc9a61e1758a98204200f30fc
MD5 24a060577965bd2a573ed87cbd207b4c
BLAKE2b-256 52d374989fffc21c74fba73eb05591cf3a56aaa135ee2427826217487028abd0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d7696c615765091cc5093f76fd1fa069870304beaccfd58b5dcc69e55ef49c1
MD5 3d129fe67d99e0aad451742abb963ffa
BLAKE2b-256 d6a86a2419c40c7b6f7cb4ef52c532c88e55490c4fa92885964757d507adddce

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79e843d186c8fb1b102bef3e2bc35ef81160ffef3194646a7fdd6a73c6b97196
MD5 6b83ba81bdc750ef9924e3dc6f7c93be
BLAKE2b-256 e15fe51e3ebdaad1bccffdf9ba4b979c8b2fe2bd376d10bf9e9b59e1c6972a1a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8d83bb187fb647643bd56e1ae43f273c7f4dbcdf94550d7938cfc32566756514
MD5 aa4d28b404566dc9f5c34a31c6cd7b23
BLAKE2b-256 fc1f34b58ba54b5f202728083b5007d4b27dfcfd0edc616addadb0b35c7817d7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0a43f0974d501842866cc83471bdb0116ba0dffdbaac33ec05e6afed5b615238
MD5 6258de3c0599f8e3674e11898f2dd71c
BLAKE2b-256 3b61e1e77694c4ed929c8edebde7d2ac30dbf3ed452c1988b633569d3d7ff271

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2635dbd200c2d6faf2ef9a0d04f0ecc6b13b3cad54f7c67c61155138835515d2
MD5 1c381a5af3e6b945c6937ab3c6e2de09
BLAKE2b-256 b68f780b1719bee25794115b23dafd022aa4a835002077df58d4234ca6a23143

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04494f6ec467ccb5369d1808570ae55f6ed9b5809d7f035059000a37b8d7e86f
MD5 fcda027f9735771088e607161c913094
BLAKE2b-256 3a8324dafa898f172e198a1c164eb01675bbcbf5895ac8f9b1f8078ea5c2fdb5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3f6bed7f840d44c08ebdb73b1825282b801799e325bcbdfa6bc5c370e5aecc65
MD5 9843951308fa31c5e36c4c6a0b090308
BLAKE2b-256 6a1e1d76829f03b7ac9c90e2b158f06b69cddf9a06b96667dd7e2d96acdc0593

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-2.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for numpy-2.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 63b92c512d9dbcc37f9d81b123dec99fdb318ba38c8059afc78086fe73820275
MD5 cc9a8db8d131fb5a387e2c1342ab0065
BLAKE2b-256 51e78ab01e44772d376efd3e1f48df618c0f6ed6aeac5e2242387f0c21a77ff7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9c27f0946a3536403efb0e1c28def1ae6730a72cd0d5878db38824855e3afc44
MD5 b30af2d2b99468538f45e6769f9fee2b
BLAKE2b-256 822df89a5cce068cd178c52e9fdc10fc227966d9da0cce368610775e75111d24

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a1712c015831da583b21c5bfe15e8684137097969c6d22e8316ba66b5baabe4
MD5 03a6426ca86ad53567e3ef61bc766013
BLAKE2b-256 c82e14e7d5dd9930993797e95121176acbc3ffc1bb0ccbd2f8f7be36285ebde0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 821eedb7165ead9eebdb569986968b541f9908979c2da8a4967ecac4439bae3d
MD5 7e831fcf9cff5317429786a3bd123671
BLAKE2b-256 87d374e627205462a170f39e7d7ddd2b4166a0d8ab163377592c7f4fa935cc8c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1cde1753efe513705a0c6d28f5884e22bdc30438bf0085c5c486cdaff40cd67a
MD5 85d2971cd78800663766f46ba312d356
BLAKE2b-256 3b89abc57eebba1da98f615c7cb5d5b04bc105f00bda34d27048772d1be5a9fb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3e8e01233d57639b2e30966c63d36fcea099d17c53bf424d77f088b0f4babd86
MD5 ab967929693baf2d2bfb00c53413ad2b
BLAKE2b-256 d6a18e8f40820ffe78ea09233b58c0f8719707b738ef36efbdc34377989b7ea5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 903703372d46bce88b6920a0cd86c3ad82dae2dbef157b5fc01b70ea1cfc430f
MD5 5eab1a2b427b590d2bc9d8ecd330fc21
BLAKE2b-256 95ed3a23463e2608b54af1fbd3649cd403e81b82993685d2a21006291b879122

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4554eb96f0fd263041baf16cf0881b3f5dafae7a59b1049acb9540c4d57bc8cb
MD5 81e4c1152274d85813bf14814ad4d359
BLAKE2b-256 c6aecc990cc3e9a211365391c193805496e7c7df93854d577e6a03d8a2319a12

See more details on using hashes here.

Provenance

File details

Details for the file numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e61155fae27570692ad1d327e81c6cf27d535a5d7ef97648a17d922224b216de
MD5 1fce84122c393e05b69e2ec53ecd1137
BLAKE2b-256 7956fb78389e7a1b1d0aa20dd0cbda5110d68f5df77b0a704180f0959b4f8ad1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page