Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.0.1.tar.gz (18.9 MB view details)

Uploaded Source

Built Distributions

numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl (16.5 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (21.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-2.0.1-cp312-cp312-win_amd64.whl (16.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.0.1-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl (13.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-2.0.1-cp311-cp311-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.0.1-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.0.1-cp310-cp310-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.0.1-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl (13.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-2.0.1-cp39-cp39-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-2.0.1-cp39-cp39-win32.whl (6.5 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ x86-64

numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-2.0.1.tar.gz.

File metadata

  • Download URL: numpy-2.0.1.tar.gz
  • Upload date:
  • Size: 18.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1.tar.gz
Algorithm Hash digest
SHA256 485b87235796410c3519a699cfe1faab097e509e90ebb05dcd098db2ae87e7b3
MD5 5df3c50fc124c3167404d396115898d0
BLAKE2b-256 1c8a0db635b225d2aa2984e405dc14bd2b0c324a0c312ea1bc9d283f2b83b038

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2c3a346ae20cfd80b6cfd3e60dc179963ef2ea58da5ec074fd3d9e7a1e7ba97f
MD5 204a3ea7fb851e08d166c74f73f9b8a3
BLAKE2b-256 4130260f1848653080d7ed1780e85547cdca50d858c6d38e835b2c8d7ac7cad9

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eacf3291e263d5a67d8c1a581a8ebbcfd6447204ef58828caf69a5e3e8c75990
MD5 b5300e6fe110bf69e1a8901c5c09e3f8
BLAKE2b-256 3bf1d156a9f3adbdbfdf97e8d0f25e32ee943200ed743c8af7a207d92ebcf61d

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 12f5d865d60fb9734e60a60f1d5afa6d962d8d4467c120a1c0cda6eb2964437d
MD5 02676eb84379b0a223288d6fd9d76942
BLAKE2b-256 1ae8ba6f8f5ee68c7459820236a1e2a76ab4eccad6b6b7f090dabffb7c62ca55

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61728fba1e464f789b11deb78a57805c70b2ed02343560456190d0501ba37b0f
MD5 34c17fe980accfb76c6f348f85b3cfef
BLAKE2b-256 2aa30a6e85731c9a5ac646cf873d02dca843c6c00fc98ed979bc59ade283ad31

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bb2124fdc6e62baae159ebcfa368708867eb56806804d005860b6007388df171
MD5 487c7c2944306f62b3770576ce903a91
BLAKE2b-256 b559f6ad30785a6578ad85ed9c2785f271b39c3e5b6412c66e810d2c60934c9f

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.0.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 173a00b9995f73b79eb0191129f2455f1e34c203f559dd118636858cc452a1bf
MD5 85596f15d4cf85c2f78b4cc12c2cad1e
BLAKE2b-256 1596310c6f3f2447f6d146518479b0a6ee6eb92a537954ec3b1acfa2894d1347

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 99d0d92a5e3613c33a5f01db206a33f8fdf3d71f2912b0de1739894668b7a93b
MD5 79e6557f40b8ed8f5973b404d98eab3d
BLAKE2b-256 da89c8856d3fd5fce12e0b3f6af371ccb90d604600923b08050c58f0cd26eac9

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cbab9fc9c391700e3e1287666dfd82d8666d10e69a6c4a09ab97574c0b7ee0a7
MD5 4b1e9fd464821a7d1de3a8ddf911311e
BLAKE2b-256 77b5c74cc1c91754436114c1de5912cdb475145245f6e645a6a1a29b5d08c774

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6790654cb13eab303d8402354fabd47472b24635700f631f041bd0b65e37298a
MD5 883ed6c41395fb2def6cc0d64dcb817f
BLAKE2b-256 2cf361eeef119beb37decb58e7cb29940f19a1464b8608f2cab8a8616aba75fd

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 529af13c5f4b7a932fb0e1911d3a75da204eff023ee5e0e79c1751564221a5c8
MD5 69822bbbbb65d8a7d00ae32b435f61cc
BLAKE2b-256 5ee3944b70438d3b7e2742fece7da8dfba6f7ef7dccdd163d1a613f7027f4d5b

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ea2326a4dca88e4a274ba3a4405eb6c6467d3ffbd8c7d38632502eaae3820587
MD5 dfb667450315fddcf84381fc8ef16892
BLAKE2b-256 6d59851609f533e7bf5f4af6264a7c5149ab07be9c8db2b0eb064794f8a7bf6d

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5daab361be6ddeb299a918a7c0864fa8618af66019138263247af405018b04e1
MD5 1068d4eadcac6a869e0e457853b7e611
BLAKE2b-256 c2da3d8debb409bc97045b559f408d2b8cefa6a077a73df14dbf4d8780d976b1

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d6fddc5fe258d3328cd8e3d7d3e02234c5d70e01ebe377a6ab92adb14039cb4
MD5 67c48f352afff5f41108f1b9561d1d5c
BLAKE2b-256 0861460fb524bb2d1a8bd4bbcb33d9b0971f9837fdedcfda8478d4c8f5cfd7ee

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6bf4e6f4a2a2e26655717a1983ef6324f2664d7011f6ef7482e8c0b3d51e82ac
MD5 6cc86f7761a33941d8c1c552186e774b
BLAKE2b-256 641c401489a7e92c30db413362756c313b9353fb47565015986c55582593e2ae

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 08458fbf403bff5e2b45f08eda195d4b0c9b35682311da5a5a0a0925b11b9bd8
MD5 8d1a31eccc8b9f077312095b11f62cb2
BLAKE2b-256 3d67928e8f0d5c7fd32f32fb5caf92b186a1b3826dbaf5a294e13a976d6c38b6

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.0.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 36d3a9405fd7c511804dc56fc32974fa5533bdeb3cd1604d6b8ff1d292b819c4
MD5 99d01d768a115d448ca2b4680de15191
BLAKE2b-256 e4e2e763e102bea9c188b43ea144a91c22bec669736889a6e0be0235d64666d7

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1f87fec1f9bc1efd23f4227becff04bd0e979e23ca50cc92ec88b38489db3b55
MD5 63caa03e0625327ad3a756e01c83a6ca
BLAKE2b-256 34b6a88a9953d0be231c67aa0b3714d6138507490753beaa927f0b33f20cdca2

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b83e16a5511d1b1f8a88cbabb1a6f6a499f82c062a4251892d9ad5d609863fb7
MD5 d9c4f49dbedb3f3d0158f00db459bd25
BLAKE2b-256 6a26a32b5a6b3f090860aeefb3619bfea09f717d73908bd65e69e8ab0cac9c07

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15eb4eca47d36ec3f78cde0a3a2ee24cf05ca7396ef808dda2c0ddad7c2bde67
MD5 00d22b299343fcdc78fbb0716ead6243
BLAKE2b-256 ef2739622993e8688a1f05898a3c3b2836b856f79c06637ebd4b71cb35cc9b18

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a3d94942c331dd4e0e1147f7a8699a4aa47dffc11bf8a1523c12af8b2e91bbe
MD5 c181105e074ee575ccf2c992e40f947a
BLAKE2b-256 724471ac0090d4ccb512fcac0ef0e5208248423a1ce30381541700470ac09b75

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a8fc2de81ad835d999113ddf87d1ea2b0f4704cbd947c948d2f5513deafe5a7b
MD5 d15a8d95661f8a1dfcc4eb089f9b46e8
BLAKE2b-256 64588664ff3747ac719ae1a5b9c0020533435158180a27f2f88a2b7a253bb623

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a1e01dcaab205fbece13c1410253a9eea1b1c9b61d237b6fa59bcc46e8e89343
MD5 de6082d719437eb7468ae31c407c503e
BLAKE2b-256 d1d8597b4b2e396a77cbec677c9de33bb1789d5c3b66d653cb723d00eb331e99

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e4eeb6eb2fced786e32e6d8df9e755ce5be920d17f7ce00bc38fcde8ccdbf9e
MD5 6d3d6ae26c520e93cef7f11ba3951f57
BLAKE2b-256 c564853cfc37494471e64ea9f7bf3bc3b4bb39450e6db5beeb05e2a66beef612

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75b4e316c5902d8163ef9d423b1c3f2f6252226d1aa5cd8a0a03a7d01ffc6268
MD5 7bbe029f650c924e952da117842d456d
BLAKE2b-256 29d6ff66f4f87518a435538e15cc9e0477a88398512a18783e748914f0daf5ea

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 81b0893a39bc5b865b8bf89e9ad7807e16717f19868e9d234bdaf9b1f1393868
MD5 874beffaefdc73da42300ce691c2419c
BLAKE2b-256 169f1fcb7fdb6ec988052b42c7f4ed6d92d89c541d640f8f39f01bf141d17426

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7b9853803278db3bdcc6cd5beca37815b133e9e77ff3d4733c247414e78eb8d1
MD5 28e8109e4ef524fa5c272d6faec870ae
BLAKE2b-256 3cf600efe4505061b100a907c55d60765b020be3b08accff37d1444d02ae108a

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9adbd9bb520c866e1bfd7e10e1880a1f7749f1f6e5017686a5fbb9b72cf69f82
MD5 b76f432906f62e31f0e09c41f3f08b4c
BLAKE2b-256 91ec18a1b896e25f0bba8aa3c3b010e7aaf62387583db368b29a571519c2dd45

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e5eeca8067ad04bc8a2a8731183d51d7cbaac66d86085d5f4766ee6bf19c7f87
MD5 e0ca08f85150af3cc6050d64e8c0bd27
BLAKE2b-256 be534c639cc2e0331ec42b54368648f23330f9ff406c74f2f0ccca6702ba6b71

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4127d4303b9ac9f94ca0441138acead39928938660ca58329fe156f84b9f3015
MD5 fe86cd85f240216f64eb076a62a229d2
BLAKE2b-256 ac9c703d6775b99ae37c3d4fc32984953572fb20e23e61c0f4154f05e5758a30

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4658c398d65d1b25e1760de3157011a80375da861709abd7cef3bad65d6543f9
MD5 db22154ea943a707917aebc79e449bc5
BLAKE2b-256 087a71b12fe40147b1a6146ffd07afbe57d3c0ea98560032fae7c6d81c861b09

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f1659887361a7151f89e79b276ed8dff3d75877df906328f14d8bb40bb4f5101
MD5 20020d28606ea58f986a262daa6018f1
BLAKE2b-256 b5ecd8faaa60f6e39227b3c7286db9db1de48b6f51227d7e64223d22d2374e3e

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1b902ce0e0a5bb7704556a217c4f63a7974f8f43e090aff03fcf262e0b135e02
MD5 1713d23342528f4f8f4027970f010068
BLAKE2b-256 5ff7d9db3db9ff23af6ed1d948441a4805cfcb24119a3edbe1d5d8bcc89b2496

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69ff563d43c69b1baba77af455dd0a839df8d25e8590e79c90fcbe1499ebde42
MD5 cff8546b69e43ae7b5050f05bdc25df2
BLAKE2b-256 d64758ad880b4a6ae4ec01e212d68d298cc5425814496e8fce7b35575880984c

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0fbb536eac80e27a2793ffd787895242b7f18ef792563d742c2d673bfcb75134
MD5 a3e7d0f361ee7302448cae3c10844dd3
BLAKE2b-256 86c0025580db782c9be4c7de992e2cc4b2930c12ef8e0f26389c88089e2f8028

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e9e81fa9017eaa416c056e5d9e71be93d05e2c3c2ab308d23307a8bc4443c368
MD5 302c8c3118a5f55d9ef35ed8e517f6b1
BLAKE2b-256 5287bb45780eb4b9ed1e4710c2f2b42ed7224071aef6f08152f2520df0ec2ee5

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-2.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f9cf5ea551aec449206954b075db819f52adc1638d46a6738253a712d553c7b4
MD5 cf579b902325e023b2dc444692eb5991
BLAKE2b-256 35a02efec9d64c64db60200909800ca04ade088bc9942641e121cf9933a53d11

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 24a0e1befbfa14615b49ba9659d3d8818a0f4d8a1c5822af8696706fbda7310c
MD5 b02eda82ee511ee27185c8a4073ea35c
BLAKE2b-256 c3c4763efe6af1925baa6c433ee926fef6996eedc7c2cb2485593de01a24e8f5

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3fdabe3e2a52bc4eff8dc7a5044342f8bd9f11ef0934fcd3289a788c0eb10018
MD5 27aec0d286eabe26d8e9149f4572dba1
BLAKE2b-256 0aeaa0c96ffd46214e5fdb4e12cfa34824468503295d6e2fdeef2e2b1de30cd7

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8efc84f01c1cd7e34b3fb310183e72fcdf55293ee736d679b6d35b35d80bba26
MD5 9c440ad02ff0a954f696637de37aab2d
BLAKE2b-256 b1e324d289c5a3255bf52824bd52295e9a7923cad8ae5ec29539fc971e1122f6

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f682ea61a88479d9498bf2091fdcd722b090724b08b31d63e022adc063bad59
MD5 be028cf4bb691921943939de17593dd7
BLAKE2b-256 bd5415a0ba87e6335d02475201c9767a6a424ee39ed438ebdb6438f34abc2c25

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ec87f5f8aca726117a1c9b7083e7656a9d0d606eec7299cc067bb83d26f16e0c
MD5 9054ecb69d21b364e59e94aab24247cb
BLAKE2b-256 97de9bf6c37a8f760847172b13691ac83c404c8485a090b349244e2758c8436d

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 72dc22e9ec8f6eaa206deb1b1355eb2e253899d7347f5e2fae5f0af613741d06
MD5 14633b898f863ea797c40ba1cf226c29
BLAKE2b-256 cc4e3f7e4fed86ec3c940ba84fe819eb5f2288de85a5f29679a9ed5fbb55dc43

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fae4ebbf95a179c1156fab0b142b74e4ba4204c87bde8d3d8b6f9c34c5825ef
MD5 5008b16c20f3d7e5a0c7764712f8908e
BLAKE2b-256 a5e4280150a359c0c3039d7965f6ade0c9324961b318f5e07cb36dc28915c0a6

See more details on using hashes here.

File details

Details for the file numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfc085b28d62ff4009364e7ca34b80a9a080cbd97c2c0630bb5f7f770dae9414
MD5 491093641afa21e65d6e629eb70571fc
BLAKE2b-256 e98b405e7dba00aa96ff03f5fef3b6fb3b6f113b13311f70faa72185696fbe0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page