Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.1.0.tar.gz (18.9 MB view details)

Uploaded Source

Built Distributions

numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.1+ x86-64

numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.1.0-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.1.0-cp313-cp313-win32.whl (6.2 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.1.0-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.1.0-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-2.1.0-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.1.0-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.1.0-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.1.0-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.1.0.tar.gz.

File metadata

  • Download URL: numpy-2.1.0.tar.gz
  • Upload date:
  • Size: 18.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0.tar.gz
Algorithm Hash digest
SHA256 7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2
MD5 4cb2230ffa1cc41329ae29bd69ee08de
BLAKE2b-256 54a4f8188c4f3e07f7737683588210c073478abcb542048cf4ab6fedad0b458a

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2
MD5 c914ba2fe3fcdcd04c8fe6a8374ea5fb
BLAKE2b-256 92190a05f78c3557ad3ecb0da85e3eb63cb1527a7ea31a521d11a4f08f753f59

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575
MD5 6a2883ee5b16ab5c031037cc63c20e9b
BLAKE2b-256 61bbba8edcb7f6478b656b1cb94331adb700c8bc06d51c3519fc647fd37dad24

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d
MD5 dc610133d9f09e5b3d396859e75c5593
BLAKE2b-256 92ed88a08b5b66bd37234a901f68b4df2beb1dc01d8a955e071991fd0ee9b4fe

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b
MD5 2f7d60a99c236a8f909bd86b8ed1e3a4
BLAKE2b-256 c25bde7ef3b3700ff1da66828f782e0c69732fb42aedbcf7f4a1a19ef6fc7e74

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb
MD5 6ff18d36d0940de6c1cc962a61b44bd5
BLAKE2b-256 f451c0dcadea0c281be5db32b29f7b977b17bdb53b7dbfcbc3b4f49288de8696

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a
MD5 85347b754d8324c508f7aeb7de243feb
BLAKE2b-256 abdab746668c7303bd73af262208abbfa8b1c86be12e9eccb0d3021ed8a58873

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6
MD5 cdeece2cd6508eeee5a4c3150b58ec59
BLAKE2b-256 f9e0ae6e12a157c4ab415b380d0f3596cb9090a0c4acf48cd8cd7bc6d6b93d24

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd
MD5 1d403eda14369ab023d5ae1c15dce25c
BLAKE2b-256 b44f27d56e9f6222419951bfeef54bc0a71dc40c0ebeb248e1aa85655da6fa11

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d
MD5 4d1481bcb17aaebfc785e005455da223
BLAKE2b-256 5034d18c95bc5981ea3bb8e6f896aad12159a37dcc67b22cd9464fe3899612f7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300
MD5 69786349d1f392dc6ac3fe00271e941b
BLAKE2b-256 6532bf9df25ef50761fcb3e089c745d2e195b35cc6506d032f12bb5cc28f6c43

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883
MD5 98756f2ff9adc2cf374c28db77e28312
BLAKE2b-256 d08e5b7c08f9238f6cc18037f6fd92f83feaa8c19e9decb6bd075cad81f71fae

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06
MD5 e0c19ca29fa8e8e051107cd36b978f05
BLAKE2b-256 5a1b40e881a3a272c4861de1e43a3e7ee1559988dd12187463726d3b395a8874

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5
MD5 8d234b05f0c4faf7b9884a1f0f19c23d
BLAKE2b-256 234be30a3132478c69df3e3e587fa87dcbf2660455daec92d8d52e7028a92554

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.1.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324
MD5 21228342cd1b4ff8c7ec1aea45c07186
BLAKE2b-256 9e8b63f74dccf86d4832d593bdbe06544f4a0a1b7e18e86e0db1e8231bf47c49

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62
MD5 50e68cbfeb330aff607969c30251632d
BLAKE2b-256 4d22c9d696b87c5ce25e857d7745fe4f090373a2daf8c26f5e15b32b5db7bff7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1
MD5 b2ef762c0ebb02b58a339c1e38f032b2
BLAKE2b-256 a7b7ae34ced7864b551e0ea01ce4e7acbe7ddf5946afb623dea39760b19bc8b0

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977
MD5 24f8c8a1235aeaedb8f154a984b3c78b
BLAKE2b-256 15722cebe04758e1123f625ed3221cb3c48602175ad619dd9b47de69689b4656

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195
MD5 573213bea3a67452a310355adc7c6aa1
BLAKE2b-256 0ece848967516bf8dd4f769886a883a4852dbc62e9b63b1137d2b9900f595222

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b
MD5 cbb5ca4dc798ea397344c93a2549e73e
BLAKE2b-256 7240e21bbbfae665ef5fa1dfd7eae1c5dc93ba9d3b36e39d2d38789dd8c22d56

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33
MD5 fcef18e031fc8588227023bac55d9636
BLAKE2b-256 d9c20fcf68c67681f9ad9d76156b4606f60b48748ead76d4ba19b90aecd4b626

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e
MD5 2f7426b06a332ea7a20159f3c06d67d1
BLAKE2b-256 5287130e95aa8a6383fc3de4fdaf7adc629289b79b88548fb6e35e9d924697d7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667
MD5 f2795bb974af42e2723e32af9b14b66d
BLAKE2b-256 c3166b536e1b67624178e3631a3fa60c9c1b5ee7cda2fa9492c4f2de01bfcb06

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc
MD5 c68bc27545ac68c54935a1d0278b18f6
BLAKE2b-256 8cbfd9d214a9dff020ad1663f1536f45d34e052e4c7f630c46cd363e785e3231

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.1.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02
MD5 9a63ebbfb3c4c6eba77ef0723a5dc86f
BLAKE2b-256 5402f0a3c2ec1622dc4346bd126e2578948c7192b3838c893a3d215738fb367b

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574
MD5 de3efbbcd792a1f82d0e3e175ea02ca9
BLAKE2b-256 cc7739e44cf0a6eb0f93b18ffb00f1964b2c471b1df5605aee486c221b06a8e4

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0
MD5 94fb0cfbc647a34177c766570fad752b
BLAKE2b-256 cda940dc96b5d43076836d82d1e84a3a4a6a4c2925a53ec0b7f31271434ff02c

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111
MD5 73dd2a5d0c85007bf5fdb4b7f66b8451
BLAKE2b-256 483ebf807eb050abc23adc556f34fcf931ca2d67ad8dfc9c17fcd9332c01347f

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745
MD5 0eedab574a3b75ec237be910e9717153
BLAKE2b-256 334d435c143c06e16c8bfccbfd9af252b0a8ac7897e0c0e36e539d75a75e91b4

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8
MD5 0d36ec6a64cbef1d727eb608a236ad2c
BLAKE2b-256 2437212dd6fbd298c467b80d4d6217b2bc902b520e96a967b59f72603bf1142f

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1
MD5 67c7abca3d0339f17a8543abc0e7bf11
BLAKE2b-256 b43b569055d01ed80634d6be6ceef8fb28eb0866e4f98c2d97667dcf9fae3e22

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529
MD5 ec25d637c43ae8229052e62a4f40f2d2
BLAKE2b-256 701d4ad38e3a1840f72c29595c06b103ecd9119f260e897ff7e88a74adb0ca14

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736
MD5 d8c911fc34a8dad4ed821036563b5758
BLAKE2b-256 ebf5a06a231cbeea4aff841ff744a12e4bf4d4407f2c753d13ce4563aa126c90

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b
MD5 ee443aa000621bed8bb2d6a94afd89b5
BLAKE2b-256 7b5e093592740805fe401ce49a627cc8a3f034dac62b34d68ab69db3c56bd662

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.1.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e
MD5 5e37df534d167af1966e099e0be9d94a
BLAKE2b-256 3fbc4b128b3ac152e64e3d117931167bc2289dab47204762ad65011b681d75e7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd
MD5 16140f5de42e87d84b80c350fd014893
BLAKE2b-256 656b46f69972a25e3b682b7a65cb525efa3650cd62e237180c2ecff7a6177173

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36
MD5 5cdb3d262d8c513b0f08cd1b6ba48512
BLAKE2b-256 db447d2f454309a620f1afdde44dffa469fece331b84e7a5bd2dba3f0f465489

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3
MD5 64fefbc527229521cf2a516b778b8aa7
BLAKE2b-256 7b93831b4c5b4355210827b3de34f539297e1833c39a68c26a8b454d8cf9f5ed

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb
MD5 772a55a6c46f7b643af4640c2ca68d70
BLAKE2b-256 d0d24838d8c3b7ac69947ffd686ba3376cb603ea3618305ae3b8547b821df218

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e
MD5 0fe85239ebe336d2baaddcb0ed001dc7
BLAKE2b-256 eca01c1b9d935d7196c4a847b76c8a8d012c986ddbc78ef159cc4c0393148062

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1
MD5 841dac2386c1da870a384b64cd31e32b
BLAKE2b-256 d5434ff735420b31cd454e4b3acdd0ba7570b453aede6fa16cf7a11cc8780d1b

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce
MD5 54571aef9d9081e35bebef10f8d64e75
BLAKE2b-256 3e98466ac2a77706699ca0141ea197e4f221d2b232051052f8f794a628a489ec

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa
MD5 e3184b9979192c8d7b80deb2af16d6bb
BLAKE2b-256 97fc961ce4fe1b3295b30ff85a0bc6da13302b870643ed9a79c034fb8469e333

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.1.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211
MD5 8328b9e2afa4013aaf3e4963349445e2
BLAKE2b-256 3394e1c65ebb0caa410afdeb83ed44778f22b92bd70855285bb168df37022d8c

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33
MD5 776eb610795d63217980a36eb23bf268
BLAKE2b-256 284a018e83dd0fa5f32730b67ff0ac35207f13bee8b870f96aa33c496545b9e6

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84
MD5 4e9fb20b080f7931791da71708740b83
BLAKE2b-256 fcd1d2fe0a6edb2a19a0da37f10cfe63ee50eb22f0874986ffb44936081e6f3b

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f
MD5 d2a3161a10811a675a29a63e25636d83
BLAKE2b-256 f3552921109f337368848375d8d987e267ba8d1a00d51d5915dc3bcca740d381

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b
MD5 530b7f38f64216f1322b39bc50f36c0c
BLAKE2b-256 5df430f3b75be994a390a366bb5284ac29217edd27a6e6749196ad08d366290d

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b
MD5 47d177533511901cd6bf77f72cbd3d6e
BLAKE2b-256 deea3e277e9971af78479c5ef318cc477718f5b541b6d1529ae494700a90347b

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673
MD5 9bd065f147dbf3f2d59ab57bff4f0074
BLAKE2b-256 ecf51c7d0baa22edd3e51301c2fb74b61295c737ca254345f45d9211b2f3cb6b

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911
MD5 3d4bca8d05eb1eba859e77ff8f91d843
BLAKE2b-256 0ad68d9c9a94c44ae456dbfc5f2ef719aebab6cce38064b815e98efd4e4a4141

See more details on using hashes here.

File details

Details for the file numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8
MD5 2323404663c0b2a86362319d7526eb80
BLAKE2b-256 e46c87c885569ebe002f9c5f5de8eda8a3622360143d61e6174610f67c695ad3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page