Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.1.0rc1.tar.gz (18.9 MB view details)

Uploaded Source

Built Distributions

numpy-2.1.0rc1-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.1.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.1.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.1.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.1.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.1.0rc1-cp313-cp313t-musllinux_1_1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.1+ x86-64

numpy-2.1.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.1.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.1.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.1.0rc1-cp313-cp313t-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.1.0rc1-cp313-cp313t-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.1.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.1.0rc1-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.1.0rc1-cp313-cp313-win32.whl (6.2 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.1.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.1.0rc1-cp313-cp313-musllinux_1_1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

numpy-2.1.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.1.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.1.0rc1-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.1.0rc1-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.1.0rc1-cp313-cp313-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.1.0rc1-cp313-cp313-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.1.0rc1-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.1.0rc1-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.1.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.1.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.1.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.1.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.1.0rc1-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.1.0rc1-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.1.0rc1-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.1.0rc1-cp312-cp312-macosx_10_9_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-2.1.0rc1-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.1.0rc1-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.1.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.1.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.1.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.1.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.1.0rc1-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.1.0rc1-cp311-cp311-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.1.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.1.0rc1-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.1.0rc1-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.1.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.1.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.1.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.1.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.1.0rc1-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.1.0rc1-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.1.0rc1-cp310-cp310-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.1.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.1.0rc1.tar.gz.

File metadata

  • Download URL: numpy-2.1.0rc1.tar.gz
  • Upload date:
  • Size: 18.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1.tar.gz
Algorithm Hash digest
SHA256 dc7ce867d277aa74555c67b93ef2a6f78bd7bd73e6c2bbafeb96f8bccd05b9d9
MD5 88e72b72f2859ff084eb3863fac3ac20
BLAKE2b-256 d10f8d2b5ebb01dc49d20ae0a282d6baff7202b7bf0df8acdd4a6abeffe98070

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0816fd52956e14551d8d71319d4b4fcfa1bcb21641f2c603f4eb64c65b1e1009
MD5 4beab0a7bde06687f699e75cd04ec024
BLAKE2b-256 ee5f1a023379bdf32e755def48f5b2506efdc72a0646dce75d41300641d26e6f

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a5a25ab780b8c29e443824abefc6ca79047ceeb889a6f76d7b1953649498e93
MD5 c29f8c6a55c1ac9e5c693f63ec17f251
BLAKE2b-256 d68e86490c963d7f0c5e4cccbff0faba30a2e194842f4a6eac0cc48a8452e0f4

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4f9317da3aa64d0ee93950d3f319b3fe0169500e25c18223715cba39e89808bd
MD5 ed26d5d79acc222e107900668edcd01f
BLAKE2b-256 351e3794c055cf814d09e1909c70fd78d2ba90e413c07177ae09d8281cb79121

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 14dea4f0d62ddd1a7f9d7b0003b35a537ac41a2b6205deec8c9c25a8e01748b4
MD5 fbc57a82683e2c9697a6992290ebe337
BLAKE2b-256 67801182fa39319d5c563d9462001c67216e21555aa97a0d3bffd631b1d1c4a7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 50b3dab872001b87052532bd4da3879fda856a2cf6c9418c19bfc94dc290e259
MD5 488776d734d4eddc9c1540bf862106bb
BLAKE2b-256 49a8c858fcdad6f3654c4e7141b5f60256cd5d3f6ff13fc85dfdff153e61d291

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98a1486861fa3c603a5a3ccd56fc45b9756372bb30f6fb559b898fc2fad82e0d
MD5 e64a5ccac64641cbbbd2caa652ff815a
BLAKE2b-256 3931276695e79068132fbe344459018fc3ff2347a7b9ca95c58b1fbafb6046b3

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06d14d20b7e98c8c06bb62e56f2b64747dd10c422bb8adbf1e6dd82cd8442e12
MD5 8409acd1916df8f8630260207a5b4eec
BLAKE2b-256 933ad9655dad3fcacce017c2eeada0d600836259be4452b5587eb1814b173845

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48a724dbfad6f4933e2c8a22239980e1b5bc16868df3450cc4ebeb9522b7902f
MD5 67d51902daf5bc9de69c6e46dfea9a64
BLAKE2b-256 4989f565d17231d26dc3c0c97ddc0164fec7f90a8f6d6709c8ad737e1ed40491

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3f79d241e4833a2a570b6e6639d2114d497011e48a351798bba81fda51560ab7
MD5 fe13066a540c68598b1180bec61e8e30
BLAKE2b-256 c0c571e131f520637ddc3bca2507f1dc358b1dfe1a0e93e5060bc1ee50563054

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 713cb46d266514db773de52af677aa931cc896a4f5e52f494449c4ff53ce6051
MD5 f58df469b6ec5e1755b1572702b56716
BLAKE2b-256 0ccd4a807b6e7580d8f6389296607baecf94cac5e2fe42e490d9c153e615e2ed

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 140c5ce21f1eccb254e550c8431825cb716eb76e896202cffa7a0d2a843506da
MD5 fed8d00d6819c467ef97e0b7611624cd
BLAKE2b-256 21465d8885dd5821a8fbf043bc1c2e6e9180cce2115742db02703f7840f22c11

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 77fa9826cbc7273e4bc3b7aa289b86936c942fe2c91bc35617c2417e14421592
MD5 1b7f8160179aef59822e3eb43cb8a210
BLAKE2b-256 bc267d7505ad38cfa5d8a656cd9d5bf0dc69e1fa60a8c6a6be1a51172010dc3d

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 ca195cd9d1d84b3498532968237774a6e06e2a4afe706b87172f1d033b95e230
MD5 1821d7e0980f297296509090cfd9c288
BLAKE2b-256 9b3327f4955728e9cd24f5afea74c97ac3224b75a224d7e157484373d52e8389

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 53979581e6acdd75b7ce94e6d3b70994f9f8cf1021316d388a159f7f388bdc7f
MD5 ea27f5a8b6dfa219b630aee52e621c8c
BLAKE2b-256 607deefb82339c5f9238f58c1c7c969dac1886dfae1a231377a0ffdea2f69826

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3e9276bff9a57100b53e5f9c44469baca1e58ec612e5143db568d69ec27b65ea
MD5 e7c1f9c2964e4d71878a1654194452b2
BLAKE2b-256 81fe4e121e2117ee5dadd484a93ae97a5cfe02a0280814208a463ac0c7107479

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 15c6bde88f242747258cfee803f3161b7a2c1ffead0817e409d95444a79b4029
MD5 36c07d317516f84cb376cc475b3ed13d
BLAKE2b-256 031f3a94926916f6d9855ffe6ef015bbe2f850190d189057d27efd8f5845cb19

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3d59479b98cc364b8a08ddd854c7817b5c578a521b56af5a96b3a9db18cc9b7
MD5 95416f883c14a10fca22007594c94a94
BLAKE2b-256 522b7f2478220a2d389f11aed3094e8f4329ffc6a13fa8df489ed86cf0d51c54

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ccc68ee27362f8d3516deecffa124d1488ae20347628e357264e7e66dbdaba08
MD5 2ce171281092e5f5d9f3d1ce8a615a94
BLAKE2b-256 513fbcea506e0eaf5701bd897afb386b5e30d651d40e8ae30d79a533c11c175a

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e5a64ac6016839fd906b3d7cc1f7ecb145c7d44a310234b6843f3b23b8ec0651
MD5 3f1c04457ce363250ac5d37935172527
BLAKE2b-256 29d0c500c5ce0cd28abd4758f8625a3ce5c7c7ced61ee35d911d568a763f248f

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f73e4fcf7455d3b734e6ecbafdbc12d3c1dd8f2146fd186e003ae1c8f00e5eed
MD5 242794f34818844e0fe695ec42c62dbe
BLAKE2b-256 098c221a4c128bd1c54e8ad2f79611e3517fe1c3d7571e6ecc278b4029002c17

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e74dc488a27b90f31ab307b4cf3f07a45bb78a0e91cfb36d69c6eced4f36089b
MD5 dbeca273db0240ca7fe395611f0c23c8
BLAKE2b-256 4762b3f6cf26709186c4408dfd302377d5796c855b5284b6b6e30721f40eca1f

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 64e8de086d2e4dac41fa286412321469b4535677184e78cc78e5061b44f0e4bf
MD5 084ecd080c6871ed034ef69cda7573de
BLAKE2b-256 4548dda70e4a5a68b8d537a370751ae016854c44617dd5aaf17266f6b2ff797a

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 86cc61c5479ed3b324011aa69484cae8f491b7f58dc0e54acf0894bdb4fae879
MD5 f8b17b8f9bddb1c21844ae2475f72389
BLAKE2b-256 b4edb84f9afdbaa0ae1f3a5500984b9244e588be33aaee4d6e2756556d26ff0f

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 1d9e0ddfb33a7a78fe92d49aaa2992a78ed5aff4cef7a21d8b1057cca075cc85
MD5 5944d81459d443a72346e7ea767b72a2
BLAKE2b-256 11578da3340d8c269bc20bbd7d61057f5884fa47d7271a3c58e546faba86eca7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5821c9831fad20cd1a8621a9ed483322ca97a9da9832690a4050ffedcb3e766b
MD5 b1ba7049684a7d674c006325b4606dd1
BLAKE2b-256 1d91741e6b14326166163eb24bc39a32be1eb6ee2ffea999343414aae0bcf01c

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7bcb4f360dc9e29b4f5f9fb36b35b429e731373843ccf39a22105bd809ef3138
MD5 f1a71557d35d8b2f87f277e85c958b2b
BLAKE2b-256 b356c81fdacd6c70c9462e526baab271d92841c36a97e38aff96cf9bd62619a2

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 524b5311d21741f0b3f48efcdd3442546be3b38507a4e3b0f5138e4340f5dee0
MD5 ae1a9945726e7d970ee0b6232d5d9b4d
BLAKE2b-256 086af7d893422c2c4382a535b9e90d84be3788ca70c7a2d7c93fc3e622668810

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8458becc562ee35b30b5e53173933414cf42e56b3f4f3d80997bf0dda7308d1
MD5 3c1877cd6108cb502ac1df39cfec86d0
BLAKE2b-256 7fd6e8491fa42ba2ecd9d1292c3169898cccb69fd3735fb5149402c2969932d3

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f4e07df8476545da7cf23f75811f4fc334b06fc50d8e945e897cfc00c8f89690
MD5 2e3a71b9ef1e60ce37949af87475f5f7
BLAKE2b-256 489bb4832c7f240b66e5bd96af476ced0d7dac21944959b3e14f52f790e2cb08

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3b534c62b1887b4bfa80f633485f2a9338f5d46d720b6cc695d2ba8b38d98987
MD5 77a6339def5185efa262658c51d6e44e
BLAKE2b-256 2118df418f7251546a93c713c6d9e0ff78a60eca9280c1f309088e78e07b1c30

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47f11bf152d8707217feb46e9662a8b1aa3554a8ee56b64d2aa99c3e9914f101
MD5 3280b4ad3a5ceb814d739a9c980d16d6
BLAKE2b-256 c07e08bb5506bb13802e8f883d3cde864b3d2ba13eb89c3239d6395521990dde

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc2af0135139bbb26b1ea5bdc430e049edb745ae643cb898afb32549ce4801de
MD5 8500240d88e6e3afc281c562af083fd7
BLAKE2b-256 5b891a99b60974afcb40fc80869deeed4544cb70a63ffc836a1e2bfab3673958

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e82b8e0b88d493d4e882f18de30f679bf1197c82d8c799acb5fdb4068cadb945
MD5 f2d1f68c8c0455cba32be4aa50f5afed
BLAKE2b-256 29131eb7ec5ebf36b70197ff982278e18f69822586b0d800d6a203c029d64afd

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f38fabd7b8d14fb7d63fbb2d07971d6edd518d2a43542c63c29164c901d2a758
MD5 f07177a3b6779e6747137e2173a545de
BLAKE2b-256 bf6865eccd6d930bc4af4aaf9c93c3a4d22688d6721ad1e7dea476c75409aab9

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1a4f960e2e5c1084cf6b1d15482a5556ecc122855d631a2395063ab703d62fdd
MD5 29e27f96f56d0d1b59f9b261ed6fe438
BLAKE2b-256 4bbd52f98e4269faa4a1d2a5129efefaf5aaf68f5107cb06082bfc5b97615a96

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58a07f2947aa06ca03d922a86ac30e403ce8282cd15904606bac852bf29ea2ad
MD5 5d2a53263c7daa9a3b9a89a4dc8ef3ac
BLAKE2b-256 4f7628d4610415ecc0a506fe9a28fc56d779f1593c1a04ccd7a472dd0d93fdd4

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a6bdc19830703eee91e7eb2d671b165febefbf5eec6a4f163d1833d23be17af
MD5 689944e33b04a11878aecaf59611341b
BLAKE2b-256 ffb2d670caaa930637512dd4f00bd06ebbcb9fc61c6b1d3e0a8dd0bc59729a04

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fea6d6939d9bf098d96c6d22bb3e4ff39f8eb3f0f26b52c8c69ba06845490095
MD5 34f5ab41c4c6a3ecbf0cc0b108a63942
BLAKE2b-256 f24b2404765e72f2e76a85f0a4d686df113ba21c8e20a7d5c41f2cb3180ee4cd

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 2b0e379a15c6b8eb69bb8170d10cfbb8a0dc9126b5402ee8860a2646f4111c3d
MD5 4e2b2eb39fc3a6ca28048588fc6a5338
BLAKE2b-256 7d5b344337a3d2998a163445527c0a2cc1702b1cfde11e7dbf7a12bb9be36884

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 4e08e733600647242a9046b6aff888e72fe8a846b00855e5136e7641b08d25d8
MD5 556393087caa0bb6eec1a76dfe2cad32
BLAKE2b-256 8a240686f0d139cbcfd6f3d16710498f94513e2338f7b01ddc6f06626ddf8cb2

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d3d1e61191e408a11658a64e9f9bb61741ad28c160576c95dac9df6f74713b4
MD5 4ee7c88591a445b3b5969999eeb7b0a7
BLAKE2b-256 3a72c8c779f03b767872803ec9ee08dbf9ab0e9a5c9a961778d6258d79ef320c

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8ee3ab33c02a0bd7d219a184c9bc43811de373551529981035673ca2a1ba7b93
MD5 b30bff4e8846c52e58fab9564b422ed2
BLAKE2b-256 4db50675214fa79cf5e5fa8a4af348e1b7400abcd34b8fb3b8fe26c3da5652a7

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.1.0rc1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 17581a2080012afe603c43005c9d050570e54683dde0d395e3edb4fa9c25f328
MD5 676fd27cea96af93142b4b420d9cb8af
BLAKE2b-256 4a33cc3349f59a3460cefdc6c7dd26134b32725fd0535558e52d6bc9d1f55d19

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 12b38b0f3ddc1342863a6849f4fcb3f506e1d21179ebd34b7aa55a30cb50899f
MD5 381957df326f45c0fba0b64a00a043ac
BLAKE2b-256 eaefa19bc32b6f6ce6fdf7c3a78c74893e3042057fbab8dfe7c757979f525d98

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be3ddd26a22d032914cfca5ef7db74f31adbd6c9d88a6f4e21ebd8e057d9474c
MD5 0e48596167a215333f277ff29ea29c45
BLAKE2b-256 3af8955b1eb580dfe0cbe92c93e0cca434ccb148e0238b998687798123fa17b9

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06156c55771da4952a2432aa457cd96159675dcab4336f5307bff042535cb6ea
MD5 c5d5697af3047b8a3dc7a5d6ca86ec86
BLAKE2b-256 ffb58caf672a951c83db62279bff77a9ca0a0aa40020d95b0b878309f6968e8a

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f412923d4ce1ec29aa3cf7752598e5eb154f549cfbf62d7c6f3cc76cb25b32e0
MD5 16a13eb5dfad8008baf937026fa2db62
BLAKE2b-256 1fb56280fea4034096e3095a98f44ef2b1864315ec4451b405ff4fa0960fcedb

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4c33387be8eadc07d0834e0b9e2ead53117fe76ab2dadd37ee80d1df80be4c05
MD5 dc2b6c2f586090bc80268a81afec4c6f
BLAKE2b-256 806a7e0845b3fbc01c682c452f6512bd843896924c6dd06427cec75bb204f1aa

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0c489f6c47bbed44918c9c8036a679614920da2a45f481d0eca2ad168ca5327f
MD5 ba9286f6bd7a238eaead5ae2111d23a8
BLAKE2b-256 2773fc42f0131b5ca600eccd0b99dfe617589245eed76bc99a84f2b7f1ab6f2e

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61cf71f62033987ed49b78a19465f40fcbf6f7e94674eda21096ebde6935c2e0
MD5 13f92a9f7ed33d71ccfb742de0e3fec9
BLAKE2b-256 e8f1fff623dc934ec14b81de821fcd65212d36350d8a092c6bb5c620197e3a51

See more details on using hashes here.

File details

Details for the file numpy-2.1.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 590acae9e4b0baa895850c0edab988c329a196bacc7326f3249fa5fe7b94e5a8
MD5 8ac48250d6b96fce749fbd0fcf464ff9
BLAKE2b-256 d2ef14128a71202e57804618ff792d42d36015357ac2732fff569cc6da3e0e81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page