Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

This version

2.1.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.1.1.tar.gz (18.9 MB view details)

Uploaded Source

Built Distributions

numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.1+ x86-64

numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.1.1-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.1.1-cp313-cp313-win32.whl (6.2 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.1.1-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.1.1-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-2.1.1-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.1.1-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.1.1-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.1.1-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.1.1.tar.gz.

File metadata

  • Download URL: numpy-2.1.1.tar.gz
  • Upload date:
  • Size: 18.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1.tar.gz
Algorithm Hash digest
SHA256 d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd
MD5 f63b4750618bfa5490f10cae37fde998
BLAKE2b-256 595f9003bb3e632f2b58f5e3a3378902dcc73c5518070736c6740fe52454e8e1

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 99f4a9ee60eed1385a86e82288971a51e71df052ed0b2900ed30bc840c0f2e39
MD5 e56ce141724af119c7c647a8705827a5
BLAKE2b-256 02313cbba87e998748b2e33ca5bc6fcc5662c867037f980918e302aebdf139a2

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50a95ca3560a6058d6ea91d4629a83a897ee27c00630aed9d933dff191f170cd
MD5 7291ff124e471d32c03464da18ff108d
BLAKE2b-256 eb9a59a548ad57df8c432bfac4556504a9fae5c082ffea53d108fcf7ce2956e4

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 52ac2e48f5ad847cd43c4755520a2317f3380213493b9d8a4c5e37f3b87df504
MD5 9a430be5d14b689ed051eccc540dfbdc
BLAKE2b-256 40b578d8b5481aeef6d2aad3724c6aa5398045d2657038dfe54c055cae1fcf75

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7be6a07520b88214ea85d8ac8b7d6d8a1839b0b5cb87412ac9f49fa934eb15d5
MD5 70fa2d3b78633bb6061c90e17364f27f
BLAKE2b-256 949ad6a5d138b53ccdc002fdf07f0d1a960326c510e66cbfff7180c88d37c482

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 53e27293b3a2b661c03f79aa51c3987492bd4641ef933e366e0f9f6c9bf257ec
MD5 603dfe4ef56c01e1fc0dcc9d5e3090ed
BLAKE2b-256 bb4c14a41eb5c9548c6cee6af0936eabfd985c69230ffa2f2598321431a9aa0a

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 13cc11c00000848702322af4de0147ced365c81d66053a67c2e962a485b3717c
MD5 32d2daf4064031f365ced5036757ad8b
BLAKE2b-256 38a057c24b2131879183051dc698fbb53fd43b77c3fa85b6e6311014f2bc2973

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 910b47a6d0635ec1bd53b88f86120a52bf56dcc27b51f18c7b4a2e2224c29f0f
MD5 749489c091ee9c00abf1ad1ef822c3ca
BLAKE2b-256 c090ee8668e84c5d5cc080ef3beb622c016adf19ca3aa51afe9dbdcc6a9baf59

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e8dfa9e94fc127c40979c3eacbae1e61fda4fe71d84869cc129e2721973231ef
MD5 ff6b9e1993d3d540074736014b1d13af
BLAKE2b-256 ab9d337ae8721b3beec48c3413d71f2d44b2defbf3c6f7a85184fc18b7b61f4a

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e30356d530528a42eeba51420ae8bf6c6c09559051887196599d96ee5f536468
MD5 3bb4ae9906499609769f1774438149a5
BLAKE2b-256 8e00e87b2cb4afcecca3b678deefb8fa53005d7054f3b5c39596e5554e5d98f8

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 cea427d1350f3fd0d2818ce7350095c1a2ee33e30961d2f0fef48576ddbbe90f
MD5 f4aa7d784992abb9bd9fe9db09c01c06
BLAKE2b-256 142ad7cf2cd9f15b23f623075546ea64a2c367cab703338ca22aaaecf7e704df

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bab7c09454460a487e631ffc0c42057e3d8f2a9ddccd1e60c7bb8ed774992480
MD5 302c9cf7b4aa695974500ee1935a92c9
BLAKE2b-256 32fcd69092b9171efa0cb8079577e71ce0cac0e08f917d33f6e99c916ed51d44

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 920b0911bb2e4414c50e55bd658baeb78281a47feeb064ab40c2b66ecba85553
MD5 f0a7a0456308dbeb739ad886f1632f16
BLAKE2b-256 380ec4f754f9e73f9bb520e8bf418c646f2c4f70c5d5f2bc561e90f884593193

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 f212d4f46b67ff604d11fff7cc62d36b3e8714edf68e44e9760e19be38c03eb0
MD5 1766258213ad41f7e36f2209ee6d2a30
BLAKE2b-256 d09c2391ee6e9ebe77232ddcab29d92662b545e99d78c3eb3b4e26d59b9ca1ca

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.1.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 251105b7c42abe40e3a689881e1793370cc9724ad50d64b30b358bbb3a97553b
MD5 1f198cb5210c76faae81359a83d58230
BLAKE2b-256 09e0d1b5adbf1731886c4186c59a9fa208585df9452a43a2b60e79af7c649717

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f7506387e191fe8cdb267f912469a3cccc538ab108471291636a96a54e599556
MD5 6ec8baeac5f979a3b98017679d457bbc
BLAKE2b-256 7f1604c5dab564887d4cd31a9ed30e51467fa70d52a4425f5a9bd1eed5b3d34c

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e097507396c0be4e547ff15b13dc3866f45f3680f789c1a1301b07dadd3fbc78
MD5 7cf90ce1b844a97aeea1a5b8c71fb49b
BLAKE2b-256 239936bf5ffe034d06df307bc783e25cf164775863166dcd878879559fe0379f

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ca4b53e1e0b279142113b8c5eb7d7a877e967c306edc34f3b58e9be12fda8df
MD5 c7dfb09db8284cb75296f708c3f77ea3
BLAKE2b-256 427875bcf16e6737cd196ff7ecf0e1fd3f953293a34dff4fd93fb488e8308536

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 981707f6b31b59c0c24bcda52e5605f9701cb46da4b86c2e8023656ad3e833cb
MD5 5bc73d67dd1032524bfd36ef877b09e4
BLAKE2b-256 8bb97ff3bfb71e316a5b43a124c4b7a5881ab12f3c32636014bef1f757f19dbd

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8ae0fd135e0b157365ac7cc31fff27f07a5572bdfc38f9c2d43b2aff416cc8b0
MD5 55ad7548e58f61b9a4f91749e36d237f
BLAKE2b-256 3e37838b7ae9262c370ab25312bab365492016f11810ffc03ebebbd54670b669

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d4c57b68c8ef5e1ebf47238e99bf27657511ec3f071c465f6b1bccbef12d4136
MD5 cb989095f9c74e3b32250a984390faeb
BLAKE2b-256 2518c732d7dd9896d11e4afcd487ac65e62f9fa0495563b7614eb850765361fa

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e5a9cb2be39350ae6c8f79410744e80154df658d5bea06e06e0ac5bb75480d5
MD5 bfd3b3c5c4616ef99d917bd94d39114a
BLAKE2b-256 321b429519a2fa28681814c511574017d35f3aab7136d554cc65f4c1526dfbf5

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 046356b19d7ad1890c751b99acad5e82dc4a02232013bd9a9a712fddf8eb60f5
MD5 647665353e5af5884df4e51610990c22
BLAKE2b-256 6b9e8bc6f133bc6d359ccc9ec051853aded45504d217685191f31f46d36b7065

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3fc5eabfc720db95d68e6646e88f8b399bfedd235994016351b1d9e062c4b270
MD5 806ca7c1e2a2013b786edbb619f6da47
BLAKE2b-256 b7985640a09daa3abf0caeaefa6e7bf0d10c0aa28a77c84e507d6a716e0e23df

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.1.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 950802d17a33c07cba7fd7c3dcfa7d64705509206be1606f196d179e539111ed
MD5 ba589ed2a79c88187c3b8574ae72a1c7
BLAKE2b-256 f4c2dddca3e69a024d2f249a5b68698328163cbdafb7e65fbf6d36373bbabf12

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313
MD5 0d6716e9a7b2c0d6e5ace9c01b9bca01
BLAKE2b-256 bff85edf1105b0dc24fd66fc3e9e7f3bca3d920cde571caaa4375ec1566073c3

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a
MD5 fdd2a82232c03d11bbc7cec0a8e01ab0
BLAKE2b-256 c7e86f4825d8f576cfd5e4d6515b9eec22bd618868bdafc8a8c08b446dcb65f0

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201
MD5 97326ac792d26f2e536a519c82f2d6bc
BLAKE2b-256 cb222b840d297183916a95847c11f82ae11e248fa98113490b2357f774651e1d

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b
MD5 ea0a401ef653a167221987a10cbef260
BLAKE2b-256 9f8a76ddef3e621541ddd6984bc24d256a4e3422d036790cbbe449e6cad439ee

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521
MD5 7e1befccfe729dc5d6c450a5fb6b801c
BLAKE2b-256 be15fabf78a6d4a10c250e87daf1cd901af05e71501380532ac508879cc46a7e

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f
MD5 c861ff048b336284fe7c0791b1a6b0b4
BLAKE2b-256 34f21316a6b08ad4c161d793abe81ff7181e9ae2e357a5b06352a383b9f8e800

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe
MD5 eaf8dce312efa2b0f17ad46612fb1681
BLAKE2b-256 6b6ca9fbef5fd2f9685212af2a9e47485cde9357c3e303e079ccf85127516f2d

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e
MD5 6b8a359bb865b5c624fd9ffc848393e1
BLAKE2b-256 3611c573ef66c004f991989c2c6218229d9003164525549409aec5ec9afc0285

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e
MD5 9e4b05b38cbff22c2bdfead528b9d2bc
BLAKE2b-256 947a4c00332a3ca79702bbc86228afd0e84e6f91b47222ec8cdf00677dd16481

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.1.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d
MD5 eb97327fd7aa6027e2409d0dcca1129a
BLAKE2b-256 9f0d67c04b6bfefd0abbe7f60f7e4f11e3aca15d688faec1d1df089966105a9a

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2
MD5 65499daccdb178d26e322d9f359cf146
BLAKE2b-256 8f344b2e604c5c44bd64b6c85e89d88871b41e60233b3ddf97419b37ae5b0c72

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e
MD5 df632b5fed7eb78d39e7194d2475c19b
BLAKE2b-256 952ddf81a1be3be6d3a92fd12dfd6c26a0dc026b276136ec1056562342a484a2

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf
MD5 f3c8b0e4fb059b9219e8ec86d9fda861
BLAKE2b-256 d937108d692f7e2544b9ae972c7bfa06c26717871c273ccec86470bc3132b04d

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca
MD5 88e99ecd063c178f25bc08d20792a9bf
BLAKE2b-256 084e3b50fa3b1e045793056ed5a1fc6f89dd897ff9cb00900ca6377fe552d442

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95
MD5 4d55d91e71b62eb5fa6561c606524f60
BLAKE2b-256 589a07c8a9dc7254f3265ae014e33768d1cfd8eb73ee6cf215f4ec3b497e4255

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0
MD5 1c492dad399abe7b97274b4c6c12ae53
BLAKE2b-256 c66efb6b1b2da9f4c757f55b202f10b6af0fe4fee87ace6e830228a12ab8ae5d

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f
MD5 5b0b3aa01fbd0b5a8b0f354bb878351e
BLAKE2b-256 ef4ed3426d9e620a18bbb979f28e4dc7f9a2c35eb7cf726ffcb33545ebdd3e6a

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550
MD5 6a18fe3029aae00986975250313bf16f
BLAKE2b-256 f7862c01070424a42b286ea0271203682c3d3e81e10ce695545b35768307b383

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae
MD5 d38d6f06589c1ec104a6a31ff6035781
BLAKE2b-256 e56ab1f7d73fec1942ded4b474a78c3fdd11c4fad5232143f41dd7e6ae166080

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for numpy-2.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728
MD5 1f8249bd725397c6233fe6a0e8ad18b1
BLAKE2b-256 b9d25b7cf5851af48c35a73b85750b41f9b622760ee11659665a688e6b3f7cb7

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647
MD5 d51be2b17f5b87aac64ab80fdfafc85e
BLAKE2b-256 bf8da8da065a46515efdbcf81a92535b816ea17194ce5b767df1f13815c32179

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0
MD5 841a859d975c55090c0b60b72aab93a3
BLAKE2b-256 4a0cfdba41b2ddeb7a052f84d85fb17d5e168af0e8034b3a2d6e369b7cc2966f

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6
MD5 ae502c99315884cda7f0236a07c035c4
BLAKE2b-256 7d4ba509d346fffede6120cc17610cc500819417ee9c3da7f08d9aaf15cab2a3

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7
MD5 e097ad5eee572b791b4a25eedad6df4a
BLAKE2b-256 cdc4869f8db87f5c9df86b93ca42036f58911ff162dd091a41e617977ab50d1f

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab
MD5 b8a45caa870aee980c298053cf064d28
BLAKE2b-256 8464879bd6877488441cfaa578c96bdc4b43710d7e3ae4f8260fbd04821da395

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f
MD5 47ed4f704a64261f07ca24ef2e674524
BLAKE2b-256 e130d2f71d3419ada3b3735e2ce9cea7dfe22c268ac9fbb24e0b5ac5fc222633

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd
MD5 84b752a2220dce7c96ff89eef4f4aec3
BLAKE2b-256 6930f41c9b6dab4e1ec56b40d1daa81ce9f9f8d26da6d02af18768a883676bd5

See more details on using hashes here.

File details

Details for the file numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9
MD5 3053a97400db800b7377749e691eb39e
BLAKE2b-256 d537e3de47233b3ba458b1021a6f95029198b2f68a83eb886a862640b6ec3e9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page