Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

This version

2.1.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.1.2.tar.gz (18.9 MB view details)

Uploaded Source

Built Distributions

numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.1+ x86-64

numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.1.2-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.1.2-cp313-cp313-win32.whl (6.2 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.1.2-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.1.2-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.1.2-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.1.2-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.1.2-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.1.2-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.1.2.tar.gz.

File metadata

  • Download URL: numpy-2.1.2.tar.gz
  • Upload date:
  • Size: 18.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2.tar.gz
Algorithm Hash digest
SHA256 13532a088217fa624c99b843eeb54640de23b3414b14aa66d023805eb731066c
MD5 3d92e07d34f60dbac6b82a0982a98757
BLAKE2b-256 4bd18a730ea07f4a37d94f9172f4ce1d81064b7a64766b460378be278952de75

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a7d80b2e904faa63068ead63107189164ca443b42dd1930299e0d1cb041cec2e
MD5 3f97ee2d9962cf9d84624f725bdd2a8f
BLAKE2b-256 c0ec0c04903b48dfea6be1d7b47ba70f98709fb7198fd970784a1400c391d522

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c193d0b0238638e6fc5f10f1b074a6993cb13b0b431f64079a509d63d3aa8b7
MD5 9e3d44cb302c629c00fde8f25809b04d
BLAKE2b-256 53b100ef9f30975f1312a53257f68e57b4513d14d537e03d507e2773a684b1e8

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 da65fb46d4cbb75cb417cddf6ba5e7582eb7bb0b47db4b99c9fe5787ce5d91f5
MD5 e7cf2857582d507dfa3e8644dd3562a6
BLAKE2b-256 6e62989c4988bde1a8e08117fccc3bab73d2886421fb98cde597168714f3c54e

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bdd407c40483463898b84490770199d5714dcc9dd9b792f6c6caccc523c00952
MD5 f26a9ac42953c84c94f8203b2dbc61c0
BLAKE2b-256 73c93e1d6bbe6d3d2e2c5a9483b24b2f29a229b323f62054278a3bba7fee11e5

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ef444c57d664d35cac4e18c298c47d7b504c66b17c2ea91312e979fcfbdfb08a
MD5 33f4d63f81ad85c1ea873197f2189d89
BLAKE2b-256 486f129e3c17e3befe7fefdeaa6890f4c4df3f3cf0831aa053802c3862da67aa

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2abbf905a0b568706391ec6fa15161fad0fb5d8b68d73c461b3c1bab6064dd62
MD5 b59750ea55cf274854f64109bf67a112
BLAKE2b-256 2ab6a790742aa88067adb4bd6c89a946778c1417d4deaeafce3ca928f26d4c52

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13311c2db4c5f7609b462bc0f43d3c465424d25c626d95040f073e30f7570e35
MD5 b1c341c7192d03e8f0f5e7c4b9b6f894
BLAKE2b-256 7c8efc1fdd83a55476765329ac2913321c4aed5b082a7915095628c4ca30ea72

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a26ae94658d3ba3781d5e103ac07a876b3e9b29db53f68ed7df432fd033358a8
MD5 84b621a2c9a8c077bc9c471abd2b3933
BLAKE2b-256 59c8e722998720ccbd35ffbcf1d1b8ed0aa2304af88d3f1c38e06ebf983599b3

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 1600068c262af1ca9580a527d43dc9d959b0b1d8e56f8a05d830eea39b7c8af6
MD5 9477b923000d63617324c487a4ce0e28
BLAKE2b-256 6aba3cce44fb1b8438042c11847048812a776f75ee0e7070179c22e4cfbf420c

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d82075752f40c0ddf57e6e02673a17f6cb0f8eb3f587f63ca1eaab5594da5b17
MD5 d2fab663ea84f1cfe13dfc00dae74fb6
BLAKE2b-256 db6e8ce677edf36da1c4dae80afe5529f47690697eb55b4864673af260ccea7b

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad369ed238b1959dfbade9018a740fb9392c5ac4f9b5173f420bd4f37ba1f7a0
MD5 cd6afcbd05835255750a2fba6012c565
BLAKE2b-256 9646af5726fde5b74ed83f2f17a73386d399319b7ed4d51279fb23b721d0816d

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2ffef621c14ebb0188a8633348504a35c13680d6da93ab5cb86f4e54b7e922b5
MD5 d2a21857c924d4b1b3c8ae8a9e9b9bb4
BLAKE2b-256 36b8033f627821784a48e8f75c218033471eebbaacdd933f8979c79637a1b44b

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 f2ded8d9b6f68cc26f8425eda5d3877b47343e68ca23d0d0846f4d312ecaa445
MD5 f6455bb4311ddde071a5ea2e14016003
BLAKE2b-256 a9969f61f8f95b6e0ea0aa08633b704c75d1882bdcb331bdf8bfd63263b25b00

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.1.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 242b39d00e4944431a3cd2db2f5377e15b5785920421993770cddb89992c3f3a
MD5 93d5c642606fe8abeff0e6db31ebe88f
BLAKE2b-256 ba06db9d127d63bd11591770ba9f3d960f8041e0f895184b9351d4b1b5b56983

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 32e16a03138cabe0cb28e1007ee82264296ac0983714094380b408097a418cfe
MD5 5ba974cd59fb8c9fc94787c754a5f636
BLAKE2b-256 df01c1bcf9e6025d79077fbf3f3ee503b50aa7bfabfcd8f4b54f5829f4c00f3f

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 76322dcdb16fccf2ac56f99048af32259dcc488d9b7e25b51e5eca5147a3fb98
MD5 0a59171c983fc2d8ea599bdf382c3d6a
BLAKE2b-256 1d21015e0594de9c3a8d5edd24943d2bd23f102ec71aec026083f822f86497e2

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43cca367bf94a14aca50b89e9bc2061683116cfe864e56740e083392f533ce7a
MD5 c198fe3deaa77fb94d15284b4e26b875
BLAKE2b-256 442663f5f4e5089654dfb858f4892215ed968cd1a68e6f4a83f9961f84f855cb

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05b2d4e667895cc55e3ff2b56077e4c8a5604361fc21a042845ea3ad67465aa8
MD5 9f8cd7de5b5aa5ad8ba52608a4b0a3b8
BLAKE2b-256 08acf2f29dd4fd325b379c7dc932a0ebab22f0e031dbe80b2f6019b291a3a544

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 675c741d4739af2dc20cd6c6a5c4b7355c728167845e3c6b0e824e4e5d36a6c3
MD5 a443fff50571df87f687ad55c9060d25
BLAKE2b-256 3ec56c5ef5ba41b65a7e51bed50dbf3e1483eb578055633dd013e811a28e96a1

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 259ec80d54999cc34cd1eb8ded513cb053c3bf4829152a2e00de2371bd406f5e
MD5 bbfee75640b337e12f894d0b54727d66
BLAKE2b-256 35eb5677556d9ba13436dab51e129f98d4829d95cd1b6bd0e199c14485a4bdb9

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d6ec0d4222e8ffdab1744da2560f07856421b367928026fb540e1945f2eeeaf
MD5 354d0970154dd002573f4291e0e9de76
BLAKE2b-256 1efb3e85a39511586053b5c6a59a643879e376fae22230ebfef9cfabb0e032e2

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a84498e0d0a1174f2b3ed769b67b656aa5460c92c9554039e11f20a05650f00d
MD5 2ea775cb4da02f39edf3089af60bddd5
BLAKE2b-256 1672716fa1dbe92395a9a623d5049203ff8ddb0cfce65b9df9117c3696ccc011

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 456e3b11cb79ac9946c822a56346ec80275eaf2950314b249b512896c0d2505e
MD5 f94c7405ed72a136e374ab82400fefdc
BLAKE2b-256 4c7973735a6a5dad6059c085f240a4e74c9270feccd2bc66e4d31b5ca01d329c

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.1.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9c6c754df29ce6a89ed23afb25550d1c2d5fdb9901d9c67a16e0b16eaf7e2550
MD5 96759e3380e4893b9b88d5d498d856b2
BLAKE2b-256 dc5a59a67d84f33fe00ae74f0b5b69dd4f93a586a4aba7f7e19b54b2133db038

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e585c8ae871fd38ac50598f4763d73ec5497b0de9a0ab4ef5b69f01c6a046142
MD5 b9934410f20505e5c4b70974cd8fdc26
BLAKE2b-256 bf7266af7916d9c3c6dbfbc8acdd4930c65461e1953374a2bc43d00f948f004a

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ab4754d432e3ac42d33a269c8567413bdb541689b02d93788af4131018cbf366
MD5 3549439284dbb1a05785b535c3de60d9
BLAKE2b-256 e9506828e66a78aa03147c111f84d55f33ce2dde547cb578d6744a3b06a0124b

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d95f286b8244b3649b477ac066c6906fbb2905f8ac19b170e2175d3d799f4df
MD5 3692a9290dd430e56e1b15387c25b7af
BLAKE2b-256 9bb4e3c7e6fab0f77fff6194afa173d1f2342073d91b1d3b4b30b17c3fb4407a

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b8cde4f11f0a975d1fd59373b32e2f5a562ade7cde4f85b7137f3de8fbb29a0
MD5 8f9cca33590be334d44cc026a3716966
BLAKE2b-256 c4a7af3329fda3c3ec31d9b650e42bbcd3422fc62a765cbb1405fde4177a0996

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 bd33f82e95ba7ad632bc57837ee99dba3d7e006536200c4e9124089e1bf42426
MD5 d131c4bd6ba29b05a5b7fa74e87a0506
BLAKE2b-256 798fb987070d45161a7a4504afc67ed38544ed2c0ed5576263599a0402204a9c

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f751ed0a2f250541e19dfca9f1eafa31a392c71c832b6bb9e113b10d050cb0f1
MD5 1f0c671db3294f4df8bffedc41a2e37f
BLAKE2b-256 5644f899b0581766c230da42f751b7b8896d096640b19b312164c267e48d36cb

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1d0fcae4f0949f215d4632be684a539859b295e2d0cb14f78ec231915d644db
MD5 fe9dfac7bee0cff178737e1706aee61a
BLAKE2b-256 b029cb48a402ea879e645b16218718f3f7d9588a77d674a9dcf22e4c43487636

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d7bf0a4f9f15b32b5ba53147369e94296f5fffb783db5aacc1be15b4bf72f43b
MD5 879f307d16f9222c49508be5ea6491fc
BLAKE2b-256 a07d554a6838f37f3ada5a55f25173c619d556ae98092a6e01afb6e710501d70

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f1eb068ead09f4994dec71c24b2844f1e4e4e013b9629f812f292f04bd1510d9
MD5 a8991919b6fae3c7a77c260f60a5e2e2
BLAKE2b-256 d496450054662295125af861d48d2c4bc081dadcf1974a879b2104613157aa62

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.1.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5006b13a06e0b38d561fab5ccc37581f23c9511879be7693bd33c7cd15ca227c
MD5 4918f2c32ca3be20c7c5d8551e649757
BLAKE2b-256 3e0fe785fe75544db9f2b0bb1c181e13ceff349ce49753d807fd9672916aa06d

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8e00ea6fc82e8a804433d3e9cedaa1051a1422cb6e443011590c14d2dea59146
MD5 dc183e12b24317bf210fb093da598d29
BLAKE2b-256 70770ad9efe25482009873f9660d29a40a8c41a6f0e8b541195e3c95c70684c5

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2cbba4b30bf31ddbe97f1c7205ef976909a93a66bb1583e983adbd155ba72ac2
MD5 8c14b4d03fc8672e43eddd3ede89be09
BLAKE2b-256 af03863fe7062c2106d3c151f7df9353f2ae2237c1dd6900f127a3eb1f24cb1b

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2b49c3c0804e8ecb05d59af8386ec2f74877f7ca8fd9c1e00be2672e4d399b1
MD5 e2a6a419b4672bfb4f3f6a98c0e575bb
BLAKE2b-256 2369538317f0d925095537745f12aced33be1570bbdc4acde49b33748669af96

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ebec5fd716c5a5b3d8dfcc439be82a8407b7b24b230d0ad28a81b61c2f4659a
MD5 0ec3e617161b42d643aaa4b8d3e477f5
BLAKE2b-256 6c89691ac07429ac061b344d5e37fa8e94be51a6017734aea15f2d9d7c6d119a

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 13602b3174432a35b16c4cfb5de9a12d229727c3dd47a6ce35111f2ebdf66ff4
MD5 34e7f3591ce81926518a36c92038a056
BLAKE2b-256 0613f5d87a497c16658e9af8920449b0b5692b469586b8231340c672962071c5

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c82af4b2ddd2ee72d1fc0c6695048d457e00b3582ccde72d8a1c991b808bb20f
MD5 8747e85e09b2000a0af5a8226740dc92
BLAKE2b-256 344ef95c99217bf77bbfaaf660d693c10bd0dc03b6032d19316d316088c9e479

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 faa88bc527d0f097abdc2c663cddf37c05a1c2f113716601555249805cf573f1
MD5 0e62474993ff6faca9c467f68cc16ceb
BLAKE2b-256 02699f05c4ecc75fabf297b17743996371b4c3dfc4d92e15c5c38d8bb3db8d74

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b42a1a511c81cc78cbc4539675713bbcf9d9c3913386243ceff0e9429ca892fe
MD5 cbcece9c21ed1daf60f3729a37b32266
BLAKE2b-256 aa9c9a6ec3ae89cd0648d419781284308f2956d2a61d932b5ac9682c956a171b

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 860ec6e63e2c5c2ee5e9121808145c7bf86c96cca9ad396c0bd3e0f2798ccbe2
MD5 e4d74f9d188dc3fe7a65adf8c01e98cc
BLAKE2b-256 c23d293cc5927f916a7bc6bf74da8f6defab63d1b13f0959d7e21878ad8a20d8

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.1.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for numpy-2.1.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a65acfdb9c6ebb8368490dbafe83c03c7e277b37e6857f0caeadbbc56e12f4fb
MD5 cbc3ae2c176324fe2a9c04ec0aff181f
BLAKE2b-256 eaec0f6d471058a01d1a05a50d2793898de1549280fa715a8537987ee866b5d9

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 12edb90831ff481f7ef5f6bc6431a9d74dc0e5ff401559a71e5e4611d4f2d466
MD5 2834df46e2cb2e81cbe4fd1ce9b96b4b
BLAKE2b-256 912437b5cf2dc7d385ac97f7b7fe50cba312abb70a2a5eac74c23af028811f73

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c6eef7a2dbd0abfb0d9eaf78b73017dbfd0b54051102ff4e6a7b2980d5ac1a03
MD5 1f2c121533715d8b099d6498e4498f81
BLAKE2b-256 345823e6b07fad492b7c47cf09cd8bad6983658f0f925b6c535fd008e3e86274

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d666cb72687559689e9906197e3bec7b736764df6a2e58ee265e360663e9baf7
MD5 9317d9b049f09c0193f074a6458cf79b
BLAKE2b-256 fb25ba023652a39a2c127200e85aed975fc6119b421e2c348e5d0171e2046edb

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6cdb606a7478f9ad91c6283e238544451e3a95f30fb5467fbf715964341a8a86
MD5 291da8bfeb7c9a3491ec35ecb2596335
BLAKE2b-256 098d42a124657f5d31902fca73921b25a0d022cead2b32ce7e6975762cd2995a

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7c1c60328bd964b53f8b835df69ae8198659e2b9302ff9ebb7de4e5a5994db3d
MD5 9ce6f9222dfabd32e66b883f1fe015aa
BLAKE2b-256 60217938cf724d9e84e45fb886f3fc794ab431d71facfebc261e3e9f19f3233a

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 fc44e3c68ff00fd991b59092a54350e6e4911152682b4782f68070985aa9e648
MD5 5ee5e7a8a892cbe96ee228ca5fe7546b
BLAKE2b-256 7cb95c6507439cd756201010f7937bf90712c2469052ae094584af14557dd64f

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e8d3ca0a72dd8846eb6f7dfe8f19088060fcb76931ed592d29128e0219652884
MD5 172614423a82ef73d8752ad8a59cbafc
BLAKE2b-256 b5d0ba271ea9108d7278d3889a7eb38d77370a88713fb94339964e71ac184d4a

See more details on using hashes here.

File details

Details for the file numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 30d53720b726ec36a7f88dc873f0eec8447fbc93d93a8f079dfac2629598d6ee
MD5 4aae28b7919b126485c1aaccee37a6ba
BLAKE2b-256 1ca240a76d357f168e9f9f06d6cc2c8e22dd5fb2bfbe63fe2c433057258c145a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page