Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

This version

2.1.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.1.3.tar.gz (20.2 MB view details)

Uploaded Source

Built Distributions

numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.1.3-cp313-cp313t-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.1.3-cp313-cp313t-win32.whl (6.3 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.1+ x86-64

numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.1.3-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.1.3-cp313-cp313-win32.whl (6.2 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.1.3-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.1.3-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl (20.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.1.3-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.1.3-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.1.3-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.1.3-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.1.3.tar.gz.

File metadata

  • Download URL: numpy-2.1.3.tar.gz
  • Upload date:
  • Size: 20.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3.tar.gz
Algorithm Hash digest
SHA256 aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761
MD5 11096358375945114577a0c82b2c6038
BLAKE2b-256 25ca1166b75c21abd1da445b97bf1fa2f14f423c6cfb4fc7c4ef31dccf9f6a94

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb
MD5 356c7bb6067ae0dccc4a54efc1879e74
BLAKE2b-256 03c2d1fee6ba999aa7cd41ca6856937f2baaf604c3eec1565eae63451ec31e5e

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d
MD5 ef251f3b6aa022b1c2fac14889d6d9d3
BLAKE2b-256 53f5365b46439b518d2ec6ebb880cc0edf90f225145dfd4db7958334f7164530

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4
MD5 5b938b2da78b1c84044df8cdb2e8e63a
BLAKE2b-256 5ef3cb8118a044b5007586245a650360c9f5915b2f4232dd7658bb7a63dd1d02

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f
MD5 c7e821e086346afc0078acb237f30431
BLAKE2b-256 00e78d8bb791b62586cc432ecbb70632b4f23b7b7c88df41878de7528264f6d7

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.3-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4
MD5 6af9109b82c0acdcf8b0e81dc0e4c517
BLAKE2b-256 8609a5ab407bd7f5f5599e6a9261f964ace03a73e7c6928de906981c31c38082

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.1.3-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48
MD5 86630bf207e8cbe6933232cb2a47a6c0
BLAKE2b-256 24d778a40ed1d80e23a774cb8a34ae8a9493ba1b4271dde96e56ccdbab1620ef

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17
MD5 06a1792849b601c7bdd38e39bc5cb5f1
BLAKE2b-256 ef621d3204313357591c913c32132a28f09a26357e33ea3c4e2fe81269e0dca1

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f
MD5 209f55dc1ed6da23a5ea3e11ca962308
BLAKE2b-256 14ce7fc0612903e91ff9d0b3f2eda4e18ef9904814afcae5b0f08edb7f637883

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6
MD5 8097ddb45c8c821085c19d940bcbe6de
BLAKE2b-256 c470ea9646d203104e647988cb7d7279f135257a6b7e3354ea6c56f8bafdb095

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408
MD5 c2b7160b748f4c1c483a7954e5024250
BLAKE2b-256 42a35355ad51ac73c23334c7caaed01adadfda49544f646fcbfbb4331deb267b

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0
MD5 b60e418506b969e6df2c0d600bf3c6d4
BLAKE2b-256 37a8eb689432eb977d83229094b58b0f53249d2209742f7de529c49d61a124a0

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e
MD5 12fe4f265dbda251309f109cbcd46f07
BLAKE2b-256 274558ed3f88028dcf80e6ea580311dc3edefdd94248f5770deb980500ef85dd

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4
MD5 133905fd003c9504fc5bb9ce71e4103b
BLAKE2b-256 b1b4a084218e7e92b506d634105b13e27a3a6645312b93e1c699cc9025adb0e1

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f
MD5 4f0c3f8c81cb6bd43a9f1f7bef7db82d
BLAKE2b-256 a7457f9244cd792e163b334e3a7f02dff1239d2890b6f37ebf9e82cbe17debc0

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed
MD5 8b7f290784c95cf620e0ac1af5470f1d
BLAKE2b-256 bbf912297ed8d8301a401e7d8eb6b418d32547f1d700ed3c038d325a605421a4

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.1.3-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f
MD5 fe47e181a70d3e865e5d6a27e5fa71cd
BLAKE2b-256 e96ad64514dcecb2ee70bfdfad10c42b76cab657e7ee31944ff7a600f141d9e9

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef
MD5 da68282c0418a22730643906e5dd58a1
BLAKE2b-256 83a27d4467a2a6d984549053b37945620209e702cf96a8bc658bc04bba13c9e2

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a
MD5 85786d12388d60b904c02eb12df55b37
BLAKE2b-256 adcd098bc1d5a5bc5307cfc65ee9369d0ca658ed88fbd7307b0d49fab6ca5fa5

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56
MD5 2c5b2381a4a4e3d9865ccb346d44a7ed
BLAKE2b-256 705073f9a5aa0810cdccda9c1d20be3cbe4a4d6ea6bfd6931464a44c95eef731

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43
MD5 8186f86f8d94a5505e6dcebe6c056ab7
BLAKE2b-256 3e4648bdf9b7241e317e6cf94276fe11ba673c06d1fdf115d8b4ebf616affd1a

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe
MD5 b3ff577c78097b187bd58f20b6e88642
BLAKE2b-256 78d661de6e7e31915ba4d87bbe1ae859e83e6582ea14c6add07c8f7eefd8488f

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57
MD5 b431935148221b79bda9490b1d069e3c
BLAKE2b-256 5544aa9ee3caee02fa5a45f2c3b95cafe59c44e4b278fbbf895a93e88b308555

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598
MD5 cd430b2caf09d21680616aef5d4a439d
BLAKE2b-256 45e1210b2d8b31ce9119145433e6ea78046e30771de3fe353f313b2778142f34

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f
MD5 0c9ffd1f1f1e96186f30a578b85da653
BLAKE2b-256 4d0b620591441457e25f3404c8057eb924d04f161244cb8a3680d529419aa86e

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a
MD5 117574ee1a645e63a6d69e20c8673665
BLAKE2b-256 a684fa11dad3404b7634aaab50733581ce11e5350383311ea7a7010f464c0170

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.1.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9
MD5 d407b7c48457789914f28004f41d6ea2
BLAKE2b-256 acb626108cf2cfa5c7e03fb969b595c93131eab4a399762b51ce9ebec2332e80

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0
MD5 eea8b148a6a2fee37b87291043e00bda
BLAKE2b-256 ad7a442965e98b34e0ae9da319f075b387bcb9a1e0658276cc63adb8c9686f7b

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc
MD5 06d8593cb7a2aae157e028c3d4cb3c96
BLAKE2b-256 439775329c28fea3113d00c8d2daf9bc5828d58d78ed661d8e05e234f86f0f6d

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b
MD5 2b83cb346bca97475fa5e39e704c45f1
BLAKE2b-256 9e3e3757f304c704f2f0294a6b8340fcf2be244038be07da4cccf390fa678a9f

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512
MD5 81cded28bb87c4987b1d975fe768c3a1
BLAKE2b-256 5eda1a429ae58b3b6c364eeec93bf044c532f2ff7b48a52e41050896cf15d5b1

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564
MD5 900548b2acb82ed0e306943fb68de802
BLAKE2b-256 c1674aa00316b3b981a822c7a239d3a8135be2a6945d1fd11d0efb25d361711a

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8
MD5 573f195910fc3b3e9ac5379816280f89
BLAKE2b-256 bda72332679479c70b68dccbf4a8eb9c9b5ee383164b161bee9284ac141fbd33

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958
MD5 faf5df4bd35ca362795cda193da49591
BLAKE2b-256 544a765b4607f0fecbb239638d610d04ec0a0ded9b4951c56dc68cef79026abf

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e
MD5 2cebcea71e71e8b09a25179b240ee240
BLAKE2b-256 8af0385eb9970309643cbca4fc6eebc8bb16e560de129c91258dfaa18498da8b

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2
MD5 d8c1a5a441b89591af8f09dfa0b2d4d5
BLAKE2b-256 1e48a9a4b538e28f854bfb62e1dea3c8fea12e90216a276c7777ae5345ff29a7

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.1.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9
MD5 c80a03952b2f4950f1eb9d1656413fec
BLAKE2b-256 7e1ce5fabb9ad849f9d798b44458fd12a318d27592d4bc1448e269dec070ff04

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0
MD5 30235088a5f86d1f343bfec458f6292d
BLAKE2b-256 7d844de0b87d5a72f45556b2a8ee9fc8801e8518ec867fc68260c1f5dcb3903f

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee
MD5 4e58e0645d81ff84c0fb75311d2a97d6
BLAKE2b-256 fa81ce213159a1ed8eb7d88a2a6ef4fbdb9e4ffd0c76b866c350eb4e3c37e640

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b
MD5 55f14ca7b55554d4a043369ae5f1837f
BLAKE2b-256 7af080811e836484262b236c684a75dfc4ba0424bc670e765afaa911468d9f39

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a
MD5 63cc090209718aa1d0f0fbd3fd03bc0b
BLAKE2b-256 272f21b94664f23af2bb52030653697c685022119e0dc93d6097c3cb45bce5f9

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09
MD5 b5eba73c2abaf5a81535f4b1034fe8d2
BLAKE2b-256 09ac61d07930a4993dd9691a6432de16d93bbe6aa4b1c12a5e573d468eefc1ca

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9
MD5 da1988c8d3a9db5947a2bd51290b8b95
BLAKE2b-256 477c864cb966b96fce5e63fcf25e1e4d957fe5725a635e5f11fe03f39dd9d6b5

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41
MD5 0d69ec06e303b5112788db68a8fdde1b
BLAKE2b-256 da745a60003fc3d8a718d830b08b654d0eea2d2db0806bab8f3c2aca7e18e010

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d
MD5 34942f9a1391532e2c3168043c0021d5
BLAKE2b-256 ad81c8167192eba5247593cd9d305ac236847c2912ff39e11402e72ae28a4985

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.1.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0
MD5 d8358545732fe4ee1ecf407b06567d81
BLAKE2b-256 8e8b1c131ab5a94c1086c289c6e1da1d843de9dbd95fe5f5ee6e61904c9518e2

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.1.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpy-2.1.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23
MD5 a65b28800e78942b9e60e03e96cfd0c0
BLAKE2b-256 f569eb20f5e1bfa07449bc67574d2f0f7c1e6b335fb41672e43861a7727d85f2

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4
MD5 2c0709812e27bcaf74d75ac8ed45614b
BLAKE2b-256 88cc278113b66a1141053cbda6f80e4200c6da06b3079c2d27bda1fde41f2c1f

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c
MD5 f31c0e80b18afc0c04cada401cbe0358
BLAKE2b-256 3e6a7eb732109b53ae64a29e25d7e68eb9d6611037f6354875497008a49e74d3

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098
MD5 8c49f457127bfb4f167c91583e5167af
BLAKE2b-256 05db5d9c91b2e1e2e72be1369278f696356d44975befcae830daf2e667dcb54f

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3
MD5 5b999693362815b56855533469aea0ca
BLAKE2b-256 68a7fde73636f6498dbfa6d82fc336164635fe592f1ad0d13285fcb6267fdc1c

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd
MD5 12da7f09cd5707634878f85845c9de10
BLAKE2b-256 d1bb75b945874f931494891eac6ca06a1764d0e8208791f3addadb2963b83527

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1
MD5 5aef4a78b69cd90d0f6fff8f88817991
BLAKE2b-256 dad62df7bde35f0478455f0be5934877b3e5a505f587b00230f54a519a6b55a5

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5
MD5 13da2761d1abe71731a2806537369115
BLAKE2b-256 6fbb7bfba10c791ae3bb6716da77ad85a82d5fac07fc96fb0023ef0571df9d20

See more details on using hashes here.

File details

Details for the file numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff
MD5 3f2f22827dd321ae86b5ab4fa888d0db
BLAKE2b-256 f180d572a4737626372915bca41c3afbfec9d173561a39a0a61bacbbfd1dafd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page