Nvidia Data Science Workbench
Project description
Data Science Workbench
Build process
Clone the repo, build the docker image for the build environment, e.g. cd nvdss && sh build-docker.sh
. Now you can launch your build docker container, e.g. sh run-docker.sh
To run the build:
sh build.sh none
# if you want to push to the pip test or prod
# sh build.sh test
# sh build.sh prod
The build creates a .whl file, e.g. dist/nvdsw-0.0.382-py3-none-any.whl
Now, you can reinstall nvdsw, e.g. do this outside of docker
pip3 install --force-reinstall dist/nvdsw-0.0.382-py3-none-any.whl
Now you can launch nvdsw:
nvdsw
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
nvdsw-0.0.389-py3-none-any.whl
(170.7 kB
view details)
File details
Details for the file nvdsw-0.0.389-py3-none-any.whl
.
File metadata
- Download URL: nvdsw-0.0.389-py3-none-any.whl
- Upload date:
- Size: 170.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe20041134b86fe6da6bba447b97ebb5595b91db46ea4e0726f728914d60eef0 |
|
MD5 | d3ae5d8a835815619b7385f03de59cee |
|
BLAKE2b-256 | 444f7050af2b1cb65b45e23253f2d7ac9ee7427095b6ae466919ee587ac82bc7 |