Skip to main content

Nvidia TensorRT Model Optimizer: a unified model optimization and deployment toolkit.

Project description

Checkout the documentation for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nvidia_modelopt-0.15.0-cp312-cp312-win_amd64.whl (502.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

nvidia_modelopt-0.15.0-cp312-cp312-manylinux_2_28_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.0-cp311-cp311-win_amd64.whl (507.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

nvidia_modelopt-0.15.0-cp311-cp311-manylinux_2_28_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.0-cp310-cp310-win_amd64.whl (507.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

nvidia_modelopt-0.15.0-cp310-cp310-manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.0-cp39-cp39-win_amd64.whl (507.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

nvidia_modelopt-0.15.0-cp39-cp39-manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.0-cp38-cp38-win_amd64.whl (507.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

nvidia_modelopt-0.15.0-cp38-cp38-manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file nvidia_modelopt-0.15.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6bd84e0a0e1ecadfc5c91762e4cd6808c8505f141afccecd2905edadb9a1efcc
MD5 449fb9f3f7252a896ce082ef8531d18a
BLAKE2b-256 f4787d73afb82a5bde37affc17a88f86a9167dafcf40c9887315d1e2eb9ee1b9

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a45b2384838fa26b61c0bddd740f5f5e9e4df87b3a1116ecb31a04e3b0ced4c5
MD5 1b0747a9e255611f6d6b1c4102e84b22
BLAKE2b-256 c24417e681dbb30e8e247b204a935159a9356ffa76ceb37399d2c7c123295725

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcbf9aed16644bd3406e280f79d60cbaaa058a7129d2ce80b45171ca62712238
MD5 ae7145ab300d2c4621a03095972a65db
BLAKE2b-256 4adeeb734d1842d974502b85e692262de820cd16a5b933eb3305b5a6ac98a130

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7bf4c12713e801c2d29577192224c76dd8fe39d64cbc6a9001d642ddc0bf9d2d
MD5 4a048361b736699e5c5c4bc2672d5381
BLAKE2b-256 b5ab9d50e93b700ef2c9e99cf9df5d5cca95f3e393a8570f43bf18d4fca9bdd8

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 678e5bec29e139a1a6090330a6b4c0f866481205a091b9c38e5af111d419cc91
MD5 9983e5e3a730b2f783f4eb792adb4eba
BLAKE2b-256 11e1f9dd5fe7bdf2c87a7f3eb25f5af1bd0b140eab3db2f7d5cbcd3597b3264f

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 627a3a9bb224ecb5e0d102539971b4a1745c747d97dc368943136cdc1a55ea81
MD5 95f7405053fd140e67ead8f411c992f6
BLAKE2b-256 fc8aa21c8ec68c041a9bb157fffc125f5f9afa31a357295dc66b8bbec0957650

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c0d853c3df87795b3901ddd234944851b23fab53f959bbaf920cb1efe2e1a505
MD5 8d744df4e8772ccda84b22c39308c3b8
BLAKE2b-256 ce673b55f71520e9e8988681e3270c45f4886bde36db1e581ee2a12b899644a9

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d5f0ca27291cbd7b6eaa4de098f9d966b2bef6467bfe099292b46d346f88ee9b
MD5 fa8902e4b5dcbf7a20e85dc2d3cda4a5
BLAKE2b-256 0d69a1019b68ccdaf8d988a5800791a9f9fa43c8a68ff26737d627ed1bcf3648

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f115d951278a1d8f5c3cdfe11147b5fe78071b40d42a15a31846bf98272ee100
MD5 96aae322799ba00e8af6a48a8e080316
BLAKE2b-256 83fe7fb47c5b66cc50c9fd1026f07efebf7701c7c8d6625ee878fa7f9c53a775

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4f334f47fcbf337f99580a2d3ed712108fe6ea8c79b330327e27995dc069f28f
MD5 18936a1663b41e00fc402355e9a84565
BLAKE2b-256 587ba32189b64d35a7ffcb2eb42ed8a31ce83950f4bb4596272b0f9b2a6125fc

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1542ca507c6a8f889faa1b416ef0dc51f471e32d7276cc2d21d4b48f0a8a546c
MD5 81de153bc712b3fcd3024d01a503c8ce
BLAKE2b-256 c3eaf62045139effc7df10d17cebdd6933fdc22362936e30983ddf2df59a1248

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b7a06480d12f64d0f78b535734dd95590d547f4722fd5839ce6ad71038ea75b
MD5 791b8e7960c65db9ffc9932cc3c91e5a
BLAKE2b-256 902db40fb26dfbfaed1b86122b7d8d6cc3e340b884742caced3209fb235c7bc6

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3390fc09baafba37133812fa9ec060dae4a3f8125ab7180ff66ca8d363e44809
MD5 cb9555561871d0e67264c1c2a0c05da6
BLAKE2b-256 cbeeb06383a5566f76decfb97c47009aa0789477fe80534fb07105ed28462441

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 92443a8e6b645fcab2359d853b4f996101c29e3c16340023bf9f2a45eaa3fcf3
MD5 bef1c01884c7bb9c5058e9871901f4a6
BLAKE2b-256 ddb9f353cf0afcbda3c3027793c794ceffebb238bc311b69bc344dbc990fdaa6

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 319d966d51f04f1902fd33392f8ebd88df71ca989a80825703c568bbf7a268c4
MD5 437f513f73de0c186e8b8e45157e7099
BLAKE2b-256 ef223afd4ce89cdc2501c509ef862a0526e4f3ec8bef39bf9864da98fbb47eae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page