Skip to main content

Nvidia TensorRT Model Optimizer: a unified model optimization and deployment toolkit.

Project description

Checkout the documentation for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nvidia_modelopt-0.15.1-cp312-cp312-win_amd64.whl (502.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

nvidia_modelopt-0.15.1-cp312-cp312-manylinux_2_28_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.1-cp311-cp311-win_amd64.whl (506.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

nvidia_modelopt-0.15.1-cp311-cp311-manylinux_2_28_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.1-cp310-cp310-win_amd64.whl (506.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

nvidia_modelopt-0.15.1-cp310-cp310-manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.1-cp39-cp39-win_amd64.whl (506.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

nvidia_modelopt-0.15.1-cp39-cp39-manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nvidia_modelopt-0.15.1-cp38-cp38-win_amd64.whl (506.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

nvidia_modelopt-0.15.1-cp38-cp38-manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

nvidia_modelopt-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file nvidia_modelopt-0.15.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f1dd60a0583bec0aa565ff22996c2e867c80f095211511ab4fd7915752da222d
MD5 03c919fec6f1e9578d860f4d8bd92107
BLAKE2b-256 0f4630f1f1cfe333a7f3339f08e8ce4c6f46edf7bc1239f360af6611febd2fdf

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 649cd60536fe4f0609a28fc00f2fc726bf36daea568255ce062672c2242be31b
MD5 a8182495b70ecc8a9fae5858bacd9faa
BLAKE2b-256 f2e682fa5fc05b290876a859c903ae02fae1ae7391caa6ac6fe40d504a2c8ed4

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7951cf9235303799c457cca72a8eafea57cd817a694ddd51b18810de4b2fb32
MD5 e667066d674d83c2ccc66361e79a8525
BLAKE2b-256 a0bec862f640152b29642e9bd5cfd23ca78cb715ad30e474346883e6e840ea19

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bc1f2f7a95a4ea41af944121b351e47a1e9774390868b7f7cc91ff7b2bbd43a1
MD5 fcb8fc1c4924163a92023097bed1e621
BLAKE2b-256 43f39f6559b80f5daa828b7e7703093a749e84069d04831c8cc76c282427b08d

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c112d6d6090c3ddb059848e4f8b810e6381a25f5e486273b8be126a6d2c64c3b
MD5 00c00109cc4cf9ea67efed648b6048c7
BLAKE2b-256 25964603e240cc994b3d6dc13e1e69c6826a496ac70bf83eae068126d57fe682

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baa5392e60e2a695c2b8abe55dcd466bef3fc85ba5734f57945fa0c61fc31b52
MD5 89c60e89e53ae368156321bcdebd53e8
BLAKE2b-256 a8c7a3affef1749127fb957316890d6d7830104970873c6b5f1caf8f71668880

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9f325b8074fe87064224550fdd8c8d5dd316a96986cebd84f6612f323dc9701a
MD5 c8337a0f758480e1bf242347770b7570
BLAKE2b-256 0245fe5ad185d55acd267c6f07a5fadca413923da71bc698eb7f7be8505714d9

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 37e444bd9d9f6210e1a215576a814afa18bb15be11c6091e509b18b69d8786b5
MD5 d00976cd277882e585e02108c753ff87
BLAKE2b-256 9015f26a6218111ca8fb8e10cfdf72c2064686ae4dbd07ef9288b88753fff979

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a81ab04b2013ebc2f35409a48b3eb774517294b7fc274d7bd33c39f4d8bf508
MD5 cdca6bffd4b659427acae989ae2d236c
BLAKE2b-256 2feb7d19ba2ae31ea5a1880674a0544609231abc5932e8057069bf410f58b214

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0226a577dad3741f809feda4f8bcfab7e5ab1020a32c508d32f7cfb0f1babe88
MD5 626a37b1a91325688076b19e6c4576d8
BLAKE2b-256 2fd18585f1dbdc49f5dbc5ccab2713e579e2835d123be9a2772ef52b7c42e5bf

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 77becf79f663d3afa22f53996274871a0c29831d42aa1a830e0a989e22818505
MD5 fbdcf8b32c66e62718f5c42e45a79191
BLAKE2b-256 8ae015e236692881fa7b7fb230147fc9bc347d62934013ea1ec5d4dbbb396b7c

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88c71814b8a2df34e3429e30763070c89e2b75707e7edc659c20a075d0881eba
MD5 92ae9e7958525fe407a8b91473eda298
BLAKE2b-256 a2f8b9c16131bd0bb924a96d79a72d5fb9f39e0372a87c2030558fbf05493f51

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 aeec4eb0caa825540bb17f1856514f4bc20ed4975353283cb1a837252676739b
MD5 6c849d13dc20f1623ede2caac02460ff
BLAKE2b-256 1a16cc13c9af734fa2767c8a71dea06549b7a0374e7bcfa54cb1eecae6cf85d8

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 714511b92dd9c91e195a3a8c958e1140e2a073b4eadb92d53f0ed95e595bb1cb
MD5 de8616169a3105eb6d4719fa4586d8bd
BLAKE2b-256 83d7ec8396cf8ccd0aa2b46cdd937496459f3a7353a5d201b779ef6b27827c1f

See more details on using hashes here.

File details

Details for the file nvidia_modelopt-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_modelopt-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5bdc1f52f81d887b1cac218ed65bb428d036661e07032f144f8ab3e9dfb5e149
MD5 77bdee31536303aea6e48d44ed1289bf
BLAKE2b-256 ff64ee67eeee1ad39a9d77f7b34d59664654fb181de8619c98a589d4e038e01b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page