Skip to main content

cugraph backend for NetworkX

Project description

nx-cugraph

Description

RAPIDS nx-cugraph is a backend to NetworkX to run supported algorithms with GPU acceleration.

System Requirements

nx-cugraph requires the following:

  • NVIDIA GPU, Volta architecture or later, with compute capability 7.0+
  • CUDA 11.2, 11.4, 11.5, 11.8, 12.0, 12.2, or 12.5
  • Python version 3.10, 3.11, or 3.12
  • NetworkX >= version 3.0 (version 3.2 or higher recommended)

More details about system requirements can be found in the RAPIDS System Requirements documentation.

Installation

nx-cugraph can be installed using either conda or pip.

conda

latest nightly version

conda install -c rapidsai-nightly -c conda-forge -c nvidia nx-cugraph

latest stable version

conda install -c rapidsai -c conda-forge -c nvidia nx-cugraph

pip

latest nightly version

python -m pip install nx-cugraph-cu11 --extra-index-url https://pypi.anaconda.org/rapidsai-wheels-nightly/simple

latest stable version

python -m pip install nx-cugraph-cu11 --extra-index-url https://pypi.nvidia.com

Notes:

  • The pip example above installs for CUDA 11. To install for CUDA 12, replace -cu11 with -cu12
  • Additional information relevant to installing any RAPIDS package can be found here.

Enabling nx-cugraph

NetworkX will use nx-cugraph as the graph analytics backend if any of the following are used:

NETWORKX_AUTOMATIC_BACKENDS environment variable.

The NETWORKX_AUTOMATIC_BACKENDS environment variable can be used to have NetworkX automatically dispatch to specified backends an API is called that the backend supports. Set NETWORKX_AUTOMATIC_BACKENDS=cugraph to use nx-cugraph to GPU accelerate supported APIs with no code changes. Example:

bash> NETWORKX_AUTOMATIC_BACKENDS=cugraph python my_networkx_script.py

backend= keyword argument

To explicitly specify a particular backend for an API, use the backend= keyword argument. This argument takes precedence over the NETWORKX_AUTOMATIC_BACKENDS environment variable. This requires anyone running code that uses the backend= keyword argument to have the specified backend installed.

Example:

nx.betweenness_centrality(cit_patents_graph, k=k, backend="cugraph")

Type-based dispatching

NetworkX also supports automatically dispatching to backends associated with specific graph types. Like the backend= keyword argument example above, this requires the user to write code for a specific backend, and therefore requires the backend to be installed, but has the advantage of ensuring a particular behavior without the potential for runtime conversions.

To use type-based dispatching with nx-cugraph, the user must import the backend directly in their code to access the utilities provided to create a Graph instance specifically for the nx-cugraph backend.

Example:

import networkx as nx
import nx_cugraph as nxcg

G = nx.Graph()
...
nxcg_G = nxcg.from_networkx(G)             # conversion happens once here
nx.betweenness_centrality(nxcg_G, k=1000)  # nxcg Graph type causes cugraph backend
                                           # to be used, no conversion necessary

Supported Algorithms

The nx-cugraph backend to NetworkX connects pylibcugraph (cuGraph's low-level python interface to its CUDA-based graph analytics library) and CuPy (a GPU-accelerated array library) to NetworkX's familiar and easy-to-use API.

Below is the list of algorithms that are currently supported in nx-cugraph.

Algorithms

bipartite
 └─ generators
     └─ complete_bipartite_graph
centrality
 ├─ betweenness
 │   ├─ betweenness_centrality
 │   └─ edge_betweenness_centrality
 ├─ degree_alg
 │   ├─ degree_centrality
 │   ├─ in_degree_centrality
 │   └─ out_degree_centrality
 ├─ eigenvector
 │   └─ eigenvector_centrality
 └─ katz
     └─ katz_centrality
cluster
 ├─ average_clustering
 ├─ clustering
 ├─ transitivity
 └─ triangles
community
 └─ louvain
     └─ louvain_communities
components
 ├─ connected
 │   ├─ connected_components
 │   ├─ is_connected
 │   ├─ node_connected_component
 │   └─ number_connected_components
 └─ weakly_connected
     ├─ is_weakly_connected
     ├─ number_weakly_connected_components
     └─ weakly_connected_components
core
 ├─ core_number
 └─ k_truss
dag
 ├─ ancestors
 └─ descendants
isolate
 ├─ is_isolate
 ├─ isolates
 └─ number_of_isolates
link_analysis
 ├─ hits_alg
 │   └─ hits
 └─ pagerank_alg
     └─ pagerank
operators
 └─ unary
     ├─ complement
     └─ reverse
reciprocity
 ├─ overall_reciprocity
 └─ reciprocity
shortest_paths
 ├─ generic
 │   ├─ has_path
 │   ├─ shortest_path
 │   └─ shortest_path_length
 ├─ unweighted
 │   ├─ all_pairs_shortest_path
 │   ├─ all_pairs_shortest_path_length
 │   ├─ bidirectional_shortest_path
 │   ├─ single_source_shortest_path
 │   ├─ single_source_shortest_path_length
 │   ├─ single_target_shortest_path
 │   └─ single_target_shortest_path_length
 └─ weighted
     ├─ all_pairs_bellman_ford_path
     ├─ all_pairs_bellman_ford_path_length
     ├─ all_pairs_dijkstra
     ├─ all_pairs_dijkstra_path
     ├─ all_pairs_dijkstra_path_length
     ├─ bellman_ford_path
     ├─ bellman_ford_path_length
     ├─ dijkstra_path
     ├─ dijkstra_path_length
     ├─ single_source_bellman_ford
     ├─ single_source_bellman_ford_path
     ├─ single_source_bellman_ford_path_length
     ├─ single_source_dijkstra
     ├─ single_source_dijkstra_path
     └─ single_source_dijkstra_path_length
traversal
 └─ breadth_first_search
     ├─ bfs_edges
     ├─ bfs_layers
     ├─ bfs_predecessors
     ├─ bfs_successors
     ├─ bfs_tree
     ├─ descendants_at_distance
     └─ generic_bfs_edges
tree
 └─ recognition
     ├─ is_arborescence
     ├─ is_branching
     ├─ is_forest
     └─ is_tree

Generators

classic
 ├─ barbell_graph
 ├─ circular_ladder_graph
 ├─ complete_graph
 ├─ complete_multipartite_graph
 ├─ cycle_graph
 ├─ empty_graph
 ├─ ladder_graph
 ├─ lollipop_graph
 ├─ null_graph
 ├─ path_graph
 ├─ star_graph
 ├─ tadpole_graph
 ├─ trivial_graph
 ├─ turan_graph
 └─ wheel_graph
community
 └─ caveman_graph
ego
 └─ ego_graph
small
 ├─ bull_graph
 ├─ chvatal_graph
 ├─ cubical_graph
 ├─ desargues_graph
 ├─ diamond_graph
 ├─ dodecahedral_graph
 ├─ frucht_graph
 ├─ heawood_graph
 ├─ house_graph
 ├─ house_x_graph
 ├─ icosahedral_graph
 ├─ krackhardt_kite_graph
 ├─ moebius_kantor_graph
 ├─ octahedral_graph
 ├─ pappus_graph
 ├─ petersen_graph
 ├─ sedgewick_maze_graph
 ├─ tetrahedral_graph
 ├─ truncated_cube_graph
 ├─ truncated_tetrahedron_graph
 └─ tutte_graph
social
 ├─ davis_southern_women_graph
 ├─ florentine_families_graph
 ├─ karate_club_graph
 └─ les_miserables_graph

Other

classes
 └─ function
     └─ is_negatively_weighted
convert
 ├─ from_dict_of_lists
 └─ to_dict_of_lists
convert_matrix
 ├─ from_pandas_edgelist
 └─ from_scipy_sparse_array
relabel
 ├─ convert_node_labels_to_integers
 └─ relabel_nodes

To request nx-cugraph backend support for a NetworkX API that is not listed above, visit the cuGraph GitHub repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nx_cugraph_cu12-24.10.0.tar.gz (5.1 kB view details)

Uploaded Source

File details

Details for the file nx_cugraph_cu12-24.10.0.tar.gz.

File metadata

  • Download URL: nx_cugraph_cu12-24.10.0.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for nx_cugraph_cu12-24.10.0.tar.gz
Algorithm Hash digest
SHA256 a2b90ea729a0abfe62bb0cb318422266cb1598a71dc4365773e807ede61d4ed7
MD5 170cd905d56dcf9e5ab67712bc6e1879
BLAKE2b-256 3dbbdeccaf5f726cc56ef9784f621c66c5249c65cf54d12c86a7ead37cfc66a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page