Skip to main content

NetworkX for ontologies

Project description

NetworkX-based Python library for representing ontologies

GitHub Actions CI Build Status
Software License
Code style: black
PyPI

Summary

nxontology is a Python library for representing ontologies using a NetworkX graph. Currently, the main area of functionality is computing similarity measures between pairs of nodes.

Usage

Here, we'll use the example metals ontology:

Metals ontology from Couto & Silva (2011)

Note that NXOntology represents the ontology as a networkx.DiGraph, where edge direction goes from superterm to subterm. Currently, users must create their own networkx.DiGraph to use this package.

Given an NXOntology instance, here how to compute intrinsic similarity metrics.

from nxontology.examples import create_metal_nxo
metals = create_metal_nxo()
# Freezing the ontology prevents adding or removing nodes or edges.
# Frozen ontologies cache expensive computations.
metals.freeze()
# Get object for computing similarity, using the Sanchez et al metric for information content.
similarity = metals.similarity("gold", "silver", ic_metric="intrinsic_ic_sanchez")
# Access a single similarity metric
similarity.lin
# Access all similarity metrics
similarity.results()

The final line outputs a dictionary like:

{
    'node_0': 'gold',
    'node_1': 'silver',
    'node_0_subsumes_1': False,
    'node_1_subsumes_0': False,
    'n_common_ancestors': 3,
    'n_union_ancestors': 5,
    'batet': 0.6,
    'batet_log': 0.5693234419266069,
    'ic_metric': 'intrinsic_ic_sanchez',
    'mica': 'coinage',
    'resnik': 0.8754687373538999,
    'resnik_scaled': 0.48860840553061435,
    'lin': 0.5581154235118403, 
    'jiang': 0.41905978419640516,
    'jiang_seco': 0.6131471927654584,
}

It's also possible to visualize the similarity between two nodes like:

from nxontology.viz import create_similarity_graphviz
gviz = create_similarity_graphviz(
    # similarity instance from above
    similarity,
    # show all nodes (defaults to union of ancestors)
    nodes=list(metals.graph),
)
# draw to PNG file
gviz.draw("metals-sim-gold-silver-all.png"))

Resulting in the following figure:

Metals ontology from Couto & Silva (2011) showing similarity between gold and silver

The two query nodes (gold & silver) are outlined with a bold dashed line. Node fill color corresponds to the Sánchez information content, such that darker nodes have higher IC. The most informative common ancestor (coinage) is outlined with a bold solid line. Nodes that are not an ancestor of gold or silver have an invisible outline.

Installation

nxontology can be installed with pip from [PyPI like:

# standard installation
pip install nxontology

# installation with viz extras
pip install nxontology[viz]

The extra viz dependencies are required for the nxontology.viz module. This includes pygraphviz, which requires a pre-existing graphviz installation.

Bibliography

Here's a list of alternative projects with code for computing semantic similarity measures on ontologies:

Below are a list of references related to ontology-derived measures of similarity. Feel free to add any reference that provides useful context and details for algorithms supported by this package. Metadata for a reference can be generated like manubot cite --yml doi:10.1016/j.jbi.2011.03.013. Adding CSL YAML output to media/bibliography.yaml will cache the metadata and allow manual edits in case of errors.

  1. Semantic Similarity in Biomedical Ontologies
    Catia Pesquita, Daniel Faria, André O. Falcão, Phillip Lord, Francisco M. Couto
    PLoS Computational Biology (2009-07-31) https://doi.org/cx8h87
    DOI: 10.1371/journal.pcbi.1000443 · PMID: 19649320 · PMCID: PMC2712090

  2. An Intrinsic Information Content Metric for Semantic Similarity in WordNet.
    Nuno Seco, Tony Veale, Jer Hayes
    In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-04), (2004) https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1065.1695

  3. Metrics for GO based protein semantic similarity: a systematic evaluation
    Catia Pesquita, Daniel Faria, Hugo Bastos, António EN Ferreira, André O Falcão, Francisco M Couto
    BMC Bioinformatics (2008-04-29) https://doi.org/cmcgw6
    DOI: 10.1186/1471-2105-9-s5-s4 · PMID: 18460186 · PMCID: PMC2367622

  4. Semantic similarity and machine learning with ontologies
    Maxat Kulmanov, Fatima Zohra Smaili, Xin Gao, Robert Hoehndorf
    Briefings in Bioinformatics (2020-10-13) https://doi.org/ghfqkt
    DOI: 10.1093/bib/bbaa199 · PMID: 33049044

  5. Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language
    P. Resnik
    Journal of Artificial Intelligence Research (1999-07-01) https://doi.org/gftcpz
    DOI: 10.1613/jair.514

  6. An Information-Theoretic Definition of Similarity
    Dekang Lin
    ICML (1998) https://api.semanticscholar.org/CorpusID:5659557

  7. ontologyX: a suite of R packages for working with ontological data
    Daniel Greene, Sylvia Richardson, Ernest Turro
    Bioinformatics (2017-01-05) https://doi.org/f9k7sx
    DOI: 10.1093/bioinformatics/btw763 · PMID: 28062448 · PMCID: PMC5386138

  8. Metric of intrinsic information content for measuring semantic similarity in an ontology
    Md. Hanif Seddiqui, Masaki Aono
    Proceedings of the Seventh Asia-Pacific Conference on Conceptual Modelling - Volume 110 (2010-01-01) https://dl.acm.org/doi/10.5555/1862330.1862343
    ISBN: 9781920682927

  9. Disjunctive shared information between ontology concepts: application to Gene Ontology
    Francisco M Couto, Mário J Silva
    Journal of Biomedical Semantics (2011) https://doi.org/fnb73v
    DOI: 10.1186/2041-1480-2-5 · PMID: 21884591 · PMCID: PMC3200982

  10. A framework for unifying ontology-based semantic similarity measures: A study in the biomedical domain
    Sébastien Harispe, David Sánchez, Sylvie Ranwez, Stefan Janaqi, Jacky Montmain
    Journal of Biomedical Informatics (2014-04) https://doi.org/f52557
    DOI: 10.1016/j.jbi.2013.11.006 · PMID: 24269894

  11. Semantic Similarity in Cheminformatics
    João D. Ferreira, Francisco M. Couto
    IntechOpen (2020-07-15) https://doi.org/ghh2d4
    DOI: 10.5772/intechopen.89032

  12. An ontology-based measure to compute semantic similarity in biomedicine
    Montserrat Batet, David Sánchez, Aida Valls
    Journal of Biomedical Informatics (2011-02) https://doi.org/dfhkjv
    DOI: 10.1016/j.jbi.2010.09.002 · PMID: 20837160

  13. Semantic similarity in the biomedical domain: an evaluation across knowledge sources
    Vijay N Garla, Cynthia Brandt
    BMC Bioinformatics (2012-10-10) https://doi.org/gb8vpn
    DOI: 10.1186/1471-2105-13-261 · PMID: 23046094 · PMCID: PMC3533586

  14. Semantic similarity estimation in the biomedical domain: An ontology-based information-theoretic perspective
    David Sánchez, Montserrat Batet
    Journal of Biomedical Informatics (2011-10) https://doi.org/d2436q
    DOI: 10.1016/j.jbi.2011.03.013 · PMID: 21463704

  15. Ontology-based information content computation
    David Sánchez, Montserrat Batet, David Isern
    Knowledge-Based Systems (2011-03) https://doi.org/cwzw4r
    DOI: 10.1016/j.knosys.2010.10.001

  16. Leveraging synonymy and polysemy to improve semantic similarity assessments based on intrinsic information content
    Montserrat Batet, David Sánchez
    Artificial Intelligence Review (2019-06-03) https://doi.org/ghnfmt
    DOI: 10.1007/s10462-019-09725-4

  17. An intrinsic information content-based semantic similarity measure considering the disjoint common subsumers of concepts of an ontology
    Abhijit Adhikari, Biswanath Dutta, Animesh Dutta, Deepjyoti Mondal, Shivang Singh
    Journal of the Association for Information Science and Technology (2018-08) https://doi.org/gd2j5b
    DOI: 10.1002/asi.24021

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nxontology-0.1.3.tar.gz (125.9 kB view details)

Uploaded Source

Built Distribution

nxontology-0.1.3-py3-none-any.whl (27.1 kB view details)

Uploaded Python 3

File details

Details for the file nxontology-0.1.3.tar.gz.

File metadata

  • Download URL: nxontology-0.1.3.tar.gz
  • Upload date:
  • Size: 125.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.7

File hashes

Hashes for nxontology-0.1.3.tar.gz
Algorithm Hash digest
SHA256 5d572b0b26751f06fe9ffea8e667fe2756d9ffc98a9d971e95ce5411757489e1
MD5 486800ba55f6277c1b804049c99261cb
BLAKE2b-256 4e89465a65fb5632ed57c69aec331dc17f4330c8ba8ef67e586ead3e1f9de00f

See more details on using hashes here.

File details

Details for the file nxontology-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: nxontology-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 27.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.7

File hashes

Hashes for nxontology-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e56de0081e975210479a42fdfe6305861e6f8de6d5e812e625a2a89d93da3738
MD5 c551e045b537e9636422a0d2d382014a
BLAKE2b-256 65701b04dd6e608bd4fe0fbe89cf21f5271f0052a5bf3bfbf7295b9df54df21d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page