Skip to main content

Objax is a machine learning framework that provides an Object Oriented layer for JAX.

Project description

Objax

Tutorials | Install | Documentation | Philosophy

This is not an officially supported Google product.

Objax is an open source machine learning framework that accelerates research and learning thanks to a minimalist object-oriented design and a readable code base. Its name comes from the contraction of Object and JAX -- a popular high-performance framework. Objax is designed by researchers for researchers with a focus on simplicity and understandability. Its users should be able to easily read, understand, extend, and modify it to fit their needs.

This is the developer repository of Objax, there is very little user documentation here, for the full documentation go to objax.readthedocs.io.

You can find READMEs in the subdirectory of this project, for example:

User installation guide

You install Objax using pip as follows:

pip install --upgrade objax

Objax supports GPUs but assumes that you already have some version of CUDA installed. Here are the extra steps:

# Update accordingly to your installed CUDA version
CUDA_VERSION=11.0
pip install -f https://storage.googleapis.com/jax-releases/jax_releases.html jaxlib==`python3 -c 'import jaxlib; print(jaxlib.__version__)'`+cuda`echo $CUDA_VERSION | sed s:\\\.::g`

Useful environment configurations

Here are a few useful options:

# Prevent JAX from taking the whole GPU memory
# (useful if you want to run several programs on a single GPU)
export XLA_PYTHON_CLIENT_PREALLOCATE=false

Testing your installation

You can test your installation by running the code below:

import jax
import objax

print(f'Number of GPUs {jax.device_count()}')

x = objax.random.normal(shape=(100, 4))
m = objax.nn.Linear(nin=4, nout=5)
print('Matrix product shape', m(x).shape)  # (100, 5)

x = objax.random.normal(shape=(100, 3, 32, 32))
m = objax.nn.Conv2D(nin=3, nout=4, k=3)
print('Conv2D return shape', m(x).shape)  # (100, 4, 32, 32)

Typically if you get errors running this using CUDA, it probably means your installation of CUDA or CuDNN has issues.

Runing code examples

Clone the code repository:

git clone https://github.com/google/objax.git
cd objax/examples

Citing Objax

To cite this repository:

@software{objax2020github,
  author = {{Objax Developers}},
  title = {{Objax}},
  url = {https://github.com/google/objax},
  version = {1.2.0},
  year = {2020},
}

Developer documentation

Here is information about development setup and a guide on adding new code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objax-1.4.0.tar.gz (50.3 kB view details)

Uploaded Source

File details

Details for the file objax-1.4.0.tar.gz.

File metadata

  • Download URL: objax-1.4.0.tar.gz
  • Upload date:
  • Size: 50.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.7

File hashes

Hashes for objax-1.4.0.tar.gz
Algorithm Hash digest
SHA256 223d9346408708ddbcd407481ced01c268b59c2c9a8a6b14a985c688fcf9f84e
MD5 2f923c9213364ef81dacda9fb7cec4ab
BLAKE2b-256 0ecb28d89a931dc9f6c0a8fca4d3c5644cfbda84ffd5811023e1603db974cc75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page