Skip to main content

Simple objects/methods results cacher with optional persistent cacheing. Supports Memory Files or Redis as storage

Project description

Simple cacher for your objects. Store copy of objects in memory (or pickle in file) and returns copy of that objects. Function arguments it is a cache key.

>>> from object_cacher import ObjectCacher
>>> @ObjectCacher(timeout=5)
... def test(*args):
...     print ('Real call')
...     return args
...
>>> test(1,2,3)
Real call
(1, 2, 3)
>>> test(1,2,3)
(1, 2, 3)
>>> test(1,2,3,4)
Real call
(1, 2, 3, 4)
>>> test(1,2,3,4)
... (1, 2, 3, 4)

Makes cache for results of hard functions or methods. For example you have remote RESTful api with a lot of dictionaries. You may cache it:

>>> from urllib import urlopen
>>> from object_cacher import ObjectCacher
>>> @ObjectCacher(timeout=60)
... def get_api():
...     print "This real call"
...     return urlopen('https://api.github.com/').read()
...
>>> get_api()
This real call
'{"current_user_url":"https://api.github.com/user", ...'
>>> get_api()
'{"current_user_url":"https://api.github.com/user", ...'

As result you made http request only once.

For methods you may use it like this:

>>> from urllib import urlopen
>>> from object_cacher import ObjectCacher
>>> class API(object):
...     @ObjectCacher(timeout=60, ignore_self=True)
...     def get_methods(self):
...         print "Real call"
...         return urlopen('https://api.github.com/').read()
...
>>> a = API()
>>> a.get_methods()
Real call
'{"current_user_url":"https://api.github.com/user", ...'
>>> b = API()
>>> b.get_methods()
'{"current_user_url":"https://api.github.com/user", ...'

If ignore_self parameter is set, cache will be shared by all instances. Otherwise cache for instances will be split.

Also you may use persistent cache. The “ObjectPersistentCacher” class-decorator makes file-based pickle-serialized cache storage. When you want to keep cache after rerun you must determine cache id:

>>> from urllib import urlopen
>>> from object_cacher import ObjectCacher
>>> class API(object):
...     @ObjectPersistentCacher(timeout=60, ignore_self=True, oid='com.github.api.listofmethods')
...     def get_methods(self):
...         print "Real call"
...         return urlopen('https://api.github.com/').read()
...
>>> a = API()
>>> a.get_methods()
Real call
'{"current_user_url":"https://api.github.com/user", ...'
>>> b = API()
>>> b.get_methods()
'{"current_user_url":"https://api.github.com/user", ...'

That is keep cache after rerun.

You may change cache dir for ObjectPersistentCacher via changing ‘CACHE_DIR’ class-property.

>>> ObjectPersistentCacher.CACHE_DIR = '/var/tmp/my_cache'

Installation

You may install from pypi

pip install object_cacher

or manual

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

object-cacher-0.3.1.tar.gz (3.8 kB view details)

Uploaded Source

File details

Details for the file object-cacher-0.3.1.tar.gz.

File metadata

File hashes

Hashes for object-cacher-0.3.1.tar.gz
Algorithm Hash digest
SHA256 69996f88ac2bef118c1f2ac2ec0c8761caeec26762577eed915e478284f028c0
MD5 e5ee1053ebe2712f3a0bb992df0f6eca
BLAKE2b-256 843a3bbd47ab4a2062c721fc8b1ee09c60c11027f45d3f2653c59724ca3736b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page