Skip to main content

Simple objects/methods results cacher with optional persistent cacheing.

Project description

Simple cacher for your objects. Store copy of objects in memory (or pickle in file) and returns copy of that objects. Function arguments it is a cache key.

>>> from object_cacher import ObjectCacher
>>> @ObjectCacher(timeout=5)
... def test(*args):
...     print ('Real call')
...     return args
...
>>> test(1,2,3)
Real call
(1, 2, 3)
>>> test(1,2,3)
(1, 2, 3)
>>> test(1,2,3,4)
Real call
(1, 2, 3, 4)
>>> test(1,2,3,4)
... (1, 2, 3, 4)

Makes cache for results of hard functions or methods. For example you have remote RESTful api with a lot of dictionaries. You may cache it:

>>> from urllib import urlopen
>>> from object_cacher import ObjectCacher
>>> @ObjectCacher(timeout=60)
... def get_api():
...     print "This real call"
...     return urlopen('https://api.github.com/').read()
...
>>> get_api()
This real call
'{"current_user_url":"https://api.github.com/user", ...'
>>> get_api()
'{"current_user_url":"https://api.github.com/user", ...'

As result you made http request only once.

For methods you may use it like this:

>>> from urllib import urlopen
>>> from object_cacher import ObjectCacher
>>> class API(object):
...     @ObjectCacher(timeout=60, ignore_self=True)
...     def get_methods(self):
...         print "Real call"
...         return urlopen('https://api.github.com/').read()
...
>>> a = API()
>>> a.get_methods()
Real call
'{"current_user_url":"https://api.github.com/user", ...'
>>> b = API()
>>> b.get_methods()
'{"current_user_url":"https://api.github.com/user", ...'

If ignore_self parameter is set, cache will be shared by all instances. Otherwise cache for instances will be split.

Also you may use persistent cache. The “ObjectPersistentCacher” class-decorator makes file-based pickle-serialized cache storage. When you want to keep cache after rerun you must determine cache id:

>>> from urllib import urlopen
>>> from object_cacher import ObjectCacher
>>> class API(object):
...     @ObjectPersistentCacher(timeout=60, ignore_self=True, oid='com.github.api.listofmethods')
...     def get_methods(self):
...         print "Real call"
...         return urlopen('https://api.github.com/').read()
...
>>> a = API()
>>> a.get_methods()
Real call
'{"current_user_url":"https://api.github.com/user", ...'
>>> b = API()
>>> b.get_methods()
'{"current_user_url":"https://api.github.com/user", ...'

That is keep cache after rerun.

You may change cache dir for ObjectPersistentCacher via changing ‘CACHE_DIR’ class-property.

>>> ObjectPersistentCacher.CACHE_DIR = '/var/tmp/my_cache'

Installation

You may install from pypi

pip install object_cacher

or manual

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

object_cacher-0.1.8.tar.gz (3.4 kB view details)

Uploaded Source

File details

Details for the file object_cacher-0.1.8.tar.gz.

File metadata

File hashes

Hashes for object_cacher-0.1.8.tar.gz
Algorithm Hash digest
SHA256 05d007250c33df6dfcb78dcfbad91816295048bb7939191e61484bd5f57eb4f8
MD5 ef90990d7125f90203b67fb91bd23e63
BLAKE2b-256 d6e0d31a6142815f07f1e5887549761750163fc98b73a96073626238f971c5ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page