Skip to main content

A package build from Tensorflow's object detection API.

Project description

Tensorflow Object Detection API

Creating accurate machine learning models capable of localizing and identifying multiple objects in a single image remains a core challenge in computer vision. The TensorFlow Object Detection API is an open source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models. At Google we’ve certainly found this codebase to be useful for our computer vision needs, and we hope that you will as well.

Contributions to the codebase are welcome and we would love to hear back from you if you find this API useful. Finally if you use the Tensorflow Object Detection API for a research publication, please consider citing:
"Speed/accuracy trade-offs for modern convolutional object detectors."
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z,
Song Y, Guadarrama S, Murphy K, CVPR 2017

[link][bibtex]

Maintainers

Table of contents

Setup:

Quick Start:

Customizing a Pipeline:

Running:

Extras:

Getting Help

To get help with issues you may encounter using the Tensorflow Object Detection API, create a new question on StackOverflow with the tags "tensorflow" and "object-detection".

Please report bugs (actually broken code, not usage questions) to the tensorflow/models GitHub issue tracker, prefixing the issue name with "object_detection".

Please check FAQ for frequently asked questions before reporting an issue.

Release information

Sep 17, 2018

We have released Faster R-CNN detectors with ResNet-50 / ResNet-101 feature extractors trained on the iNaturalist Species Detection Dataset. The models are trained on the training split of the iNaturalist data for 4M iterations, they achieve 55% and 58% mean AP@.5 over 2854 classes respectively. For more details please refer to this paper.

Thanks to contributors: Chen Sun

July 13, 2018

There are many new updates in this release, extending the functionality and capability of the API:

  • Moving from slim-based training to Estimator-based training.
  • Support for RetinaNet, and a MobileNet adaptation of RetinaNet.
  • A novel SSD-based architecture called the Pooling Pyramid Network (PPN).
  • Releasing several TPU-compatible models. These can be found in the samples/configs/ directory with a comment in the pipeline configuration files indicating TPU compatibility.
  • Support for quantized training.
  • Updated documentation for new binaries, Cloud training, and Tensorflow Lite.

See also our expanded announcement blogpost and accompanying tutorial at the TensorFlow blog.

Thanks to contributors: Sara Robinson, Aakanksha Chowdhery, Derek Chow, Pengchong Jin, Jonathan Huang, Vivek Rathod, Zhichao Lu, Ronny Votel

June 25, 2018

Additional evaluation tools for the Open Images Challenge 2018 are out. Check out our short tutorial on data preparation and running evaluation here!

Thanks to contributors: Alina Kuznetsova

June 5, 2018

We have released the implementation of evaluation metrics for both tracks of the Open Images Challenge 2018 as a part of the Object Detection API - see the evaluation protocols for more details. Additionally, we have released a tool for hierarchical labels expansion for the Open Images Challenge: check out oid_hierarchical_labels_expansion.py.

Thanks to contributors: Alina Kuznetsova, Vittorio Ferrari, Jasper Uijlings

April 30, 2018

We have released a Faster R-CNN detector with ResNet-101 feature extractor trained on AVA v2.1. Compared with other commonly used object detectors, it changes the action classification loss function to per-class Sigmoid loss to handle boxes with multiple labels. The model is trained on the training split of AVA v2.1 for 1.5M iterations, it achieves mean AP of 11.25% over 60 classes on the validation split of AVA v2.1. For more details please refer to this paper.

Thanks to contributors: Chen Sun, David Ross

April 2, 2018

Supercharge your mobile phones with the next generation mobile object detector! We are adding support for MobileNet V2 with SSDLite presented in MobileNetV2: Inverted Residuals and Linear Bottlenecks. This model is 35% faster than Mobilenet V1 SSD on a Google Pixel phone CPU (200ms vs. 270ms) at the same accuracy. Along with the model definition, we are also releasing a model checkpoint trained on the COCO dataset.

Thanks to contributors: Menglong Zhu, Mark Sandler, Zhichao Lu, Vivek Rathod, Jonathan Huang

February 9, 2018

We now support instance segmentation!! In this API update we support a number of instance segmentation models similar to those discussed in the Mask R-CNN paper. For further details refer to our slides from the 2017 Coco + Places Workshop. Refer to the section on Running an Instance Segmentation Model for instructions on how to configure a model that predicts masks in addition to object bounding boxes.

Thanks to contributors: Alireza Fathi, Zhichao Lu, Vivek Rathod, Ronny Votel, Jonathan Huang

November 17, 2017

As a part of the Open Images V3 release we have released:

  • An implementation of the Open Images evaluation metric and the protocol.
  • Additional tools to separate inference of detection and evaluation (see this tutorial).
  • A new detection model trained on the Open Images V2 data release (see Open Images model).

See more information on the Open Images website!

Thanks to contributors: Stefan Popov, Alina Kuznetsova

November 6, 2017

We have re-released faster versions of our (pre-trained) models in the model zoo. In addition to what was available before, we are also adding Faster R-CNN models trained on COCO with Inception V2 and Resnet-50 feature extractors, as well as a Faster R-CNN with Resnet-101 model trained on the KITTI dataset.

Thanks to contributors: Jonathan Huang, Vivek Rathod, Derek Chow, Tal Remez, Chen Sun.

October 31, 2017

We have released a new state-of-the-art model for object detection using the Faster-RCNN with the NASNet-A image featurization. This model achieves mAP of 43.1% on the test-dev validation dataset for COCO, improving on the best available model in the zoo by 6% in terms of absolute mAP.

Thanks to contributors: Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le

August 11, 2017

We have released an update to the Android Detect demo which will now run models trained using the Tensorflow Object Detection API on an Android device. By default, it currently runs a frozen SSD w/Mobilenet detector trained on COCO, but we encourage you to try out other detection models!

Thanks to contributors: Jonathan Huang, Andrew Harp

June 15, 2017

In addition to our base Tensorflow detection model definitions, this release includes:

  • A selection of trainable detection models, including:
    • Single Shot Multibox Detector (SSD) with MobileNet,
    • SSD with Inception V2,
    • Region-Based Fully Convolutional Networks (R-FCN) with Resnet 101,
    • Faster RCNN with Resnet 101,
    • Faster RCNN with Inception Resnet v2
  • Frozen weights (trained on the COCO dataset) for each of the above models to be used for out-of-the-box inference purposes.
  • A Jupyter notebook for performing out-of-the-box inference with one of our released models
  • Convenient local training scripts as well as distributed training and evaluation pipelines via Google Cloud.

Thanks to contributors: Jonathan Huang, Vivek Rathod, Derek Chow, Chen Sun, Menglong Zhu, Matthew Tang, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Jasper Uijlings, Viacheslav Kovalevskyi, Kevin Murphy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objectdetection-0.0.2.tar.gz (504.1 kB view details)

Uploaded Source

Built Distribution

objectdetection-0.0.2-py3-none-any.whl (754.3 kB view details)

Uploaded Python 3

File details

Details for the file objectdetection-0.0.2.tar.gz.

File metadata

  • Download URL: objectdetection-0.0.2.tar.gz
  • Upload date:
  • Size: 504.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.1

File hashes

Hashes for objectdetection-0.0.2.tar.gz
Algorithm Hash digest
SHA256 fd91d1149523f0f201a461a340627ff43a80f5c02bef41c64ec5ca082171b892
MD5 41216115d8f7d6f79252aedcf7e5bebd
BLAKE2b-256 fb91156d89f00814f205df4541292b3f1d9a01565de1eb7698103595ce733794

See more details on using hashes here.

File details

Details for the file objectdetection-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: objectdetection-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 754.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.1

File hashes

Hashes for objectdetection-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 62aa4f191ccb8f55409339e22b2209395ee8c9e27e511817f0c96581cab7e3d9
MD5 840c7fbeba9453b57e2746dc3b16c103
BLAKE2b-256 00537b332d89f74130491f127af4a9b4f2be2847c0691cc363b67580f1a49ab7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page