Skip to main content

Convert a Chainer model into ONNX

Project description

# ONNX-Chainer
![pypi](https://img.shields.io/pypi/v/onnx-chainer.svg)
![Build Status](https://travis-ci.org/chainer/onnx-chainer.svg?branch=master)
![MIT License](https://img.shields.io/github/license/mitmul/onnx-chainer.svg)

This is an add-on package for ONNX support by Chainer.

## Tested environment

- ONNX 1.1.1
- Chainer 3.5.0, 4.2.0
- Python 2.7.14, 3.5.5, 3.6.5

### Compatibility tests

- with MXNet 1.2.0
- with NNVM (under TVM repository at commit ID = `ebdde3c277a9807a67b233cecfaf6d9f96c0c1bc`)

## Installation

### On Ubuntu 14.04/16.04

**Please install Chainer first.**

```bash
pip install chainer
pip install onnx-chainer
```

## Run Test

### 1. Build Docker images

```bash
cd docker
bash build_docker.sh
```

### 2. Run tests

```bash
bash docker/run_tests.sh
```

## Quick Start

First, install [ChainerCV](https://github.com/chainer/chainercv) to get the pre-trained models.

```python
import numpy as np

import chainer
import chainercv.links as C
import onnx_chainer

model = C.VGG16(pretrained_model='imagenet')

# Pseudo input
x = np.zeros((1, 3, 224, 224), dtype=np.float32)

onnx_chainer.export(model, x, filename='vgg16.onnx')
```

## Load models from MXNet

Install [MXNet](https://github.com/apache/incubator-mxnet) first, then try the following code:

```python
import collections

import mxnet
import numpy as np

import chainer
import chainer.functions as F
import chainercv.links as C
import onnx_chainer

# Prepare an input tensor
x = np.random.rand(1, 3, 224, 224).astype(np.float32) * 255

# Run the model on the data
with chainer.using_config('train', False):
chainer_out = model(x).array

# Export Chainer model into ONNX
onnx_chainer.export(model, x, fn)

# Load ONNX model into MXNet symbol
sym, arg, aux = mxnet.contrib.onnx.import_model(fn)

# Find the name of input tensor
data_names = [graph_input for graph_input in sym.list_inputs()
if graph_input not in arg and graph_input not in aux]
data_shapes = [(data_names[0], x.shape)]

# Create MXNet model
mod = mxnet.mod.Module(
symbol=sym, data_names=data_names, context=mxnet.cpu(),
label_names=None)
mod.bind(
for_training=False, data_shapes=data_shapes,
label_shapes=None)
mod.set_params(
arg_params=arg, aux_params=aux, allow_missing=True,
allow_extra=True)

# Create input data
Batch = collections.namedtuple('Batch', ['data'])
input_data = Batch([mxnet.nd.array(x)])

# Forward computation using MXNet
mod.forward(input_data)

# Retrieve the output of forward result
mxnet_out = mod.get_outputs()[0].asnumpy()

# Check the prediction results are same
assert np.argmax(chainer_out) == np.argmax(mxnet_out)

# Check both outputs have same values
np.testing.assert_almost_equal(chainer_out, mxnet_out, decimal=5)
```

## Compile the Chainer model via ONNX

Please install [TVM](https://github.com/dmlc/tvm/tree/ebdde3c277a9807a67b233cecfaf6d9f96c0c1bc) at a specified commit ID (ebdde3c277a9807a67b233cecfaf6d9f96c0c1bc) with NNVM first.

```python
import collections

import numpy as np
import onnx

import chainer
import chainer.functions as F
import chainercv.links as C
import nnvm
import onnx_chainer
import tvm

model = C.ResNet50(pretrained_model='imagenet', arch='he')
# Change cover_all option to False to match the default behavior of MXNet's pooling
model.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2, cover_all=False)
save_as_onnx_then_import_from_nnvm(model, 'resnet50.onnx')

# Prepare an input tensor
x = np.random.rand(1, 3, 224, 224).astype(np.float32) * 255

# Run the model on the data
with chainer.using_config('train', False):
chainer_out = model(x).array

# Export Chainer model into ONNX
onnx_chainer.export(model, x, fn)

# Load the saved ONNX file using ONNX module
model_onnx = onnx.load(fn)

# Convert the ONNX model object into NNVM symbol
sym, params = nnvm.frontend.from_onnx(model_onnx)

# Choose the compilation target
target = 'llvm'

# Extract the name of input variable in the ONNX graph
input_name = sym.list_input_names()[0]
shape_dict = {input_name: x.shape}

# Compile the model using NNVM
graph, lib, params = nnvm.compiler.build(
sym, target, shape_dict, params=params)

# Convert the compiled model into TVM module
module = tvm.contrib.graph_runtime.create(graph, lib, tvm.cpu(0))

# Set the input tensor x
module.set_input(input_name, tvm.nd.array(x))
module.set_input(**params)

# Run the model
module.run()

# Retrieve the inference result
out_shape = (1, 1000)
output = tvm.nd.empty(out_shape, ctx=tvm.cpu(0))
nnvm_output = module.get_output(0, output).asnumpy()

# Check both outputs have same values
np.testing.assert_almost_equal(chainer_out, nnvm_output, decimal=5)
```

## Supported Functions

Currently 49 Chainer Functions are supported to export in ONNX format.

### Activation

- ELU
- HardSigmoid
- LeakyReLU
- LogSoftmax
- PReLUFunction
- ReLU
- Sigmoid
- Softmax
- Softplus
- Tanh

### Array

- Cast
- Concat
- Depth2Space
- Pad <sup>[1](#pad1)</sup><sup>[2](#pad2)</sup>
- Reshape
- Space2Depth
- SplitAxis
- Squeeze
- Tile
- Transpose

### Connection

- Convolution2DFunction
- ConvolutionND
- Deconvolution2DFunction
- DeconvolutionND
- EmbedIDFunction <sup>[3](#embed1)</sup>
- LinearFunction

### Math

- Add
- Absolute
- Div
- Mul
- Neg
- PowVarConst
- Sub
- Clip
- Exp
- Identity
- MatMul
- Maximum
- Minimum
- Sqrt
- Sum

### Noise

- Dropout <sup>[4](#dropout1)</sup>

### Pooling

- AveragePooling2D
- AveragePoolingND
- MaxPooling2D
- MaxPoolingND

### Normalization

- BatchNormalization
- FixedBatchNormalization
- LocalResponseNormalization

---

<a name="pad1">1</a>: mode should be either 'constant', 'reflect', or 'edge'<br />
<a name="pad2">2</a>: ONNX doesn't support multiple constant values for Pad operation<br />
<a name="embed1">3</a>: Current ONNX doesn't support ignore_label for EmbedID<br />
<a name="dropout1">4</a>: In test mode, all dropout layers aren't included in the exported file<br />

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-chainer-1.1.1a1.tar.gz (13.2 kB view details)

Uploaded Source

File details

Details for the file onnx-chainer-1.1.1a1.tar.gz.

File metadata

File hashes

Hashes for onnx-chainer-1.1.1a1.tar.gz
Algorithm Hash digest
SHA256 68750f560bf5db19db1dc1844883afa5c6a3eb55f01a32c7e2eb9b64e7f3d1a4
MD5 79a3c368cf9b892b418e44643c23f0a4
BLAKE2b-256 ca3ac091b3ddab31a451e1087593b5d5fb3b298fdcf781f4204dbf13cb98c5d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page