Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx_weekly-1.18.0.dev20241014.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

onnx_weekly-1.18.0.dev20241014-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

onnx_weekly-1.18.0.dev20241014-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241014-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241014-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx_weekly-1.18.0.dev20241014-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241014-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241014-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx_weekly-1.18.0.dev20241014-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241014-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241014-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx_weekly-1.18.0.dev20241014-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241014-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241014-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx_weekly-1.18.0.dev20241014-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241014-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file onnx_weekly-1.18.0.dev20241014.tar.gz.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014.tar.gz
Algorithm Hash digest
SHA256 1b5808d229a3f5e7161f4b93955511fa0a6cc6c8b1000e98fbc090e60be8892f
MD5 d5dd765a056dfa9575f51690027c0407
BLAKE2b-256 231000328abb788dd9baef420b39d0ace94be73e2cbf191f111444b4449b3476

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 648b894cf8c484d197026b6bf656d90b630b92cdb4a7970bce00ccb17a1b65db
MD5 1a21723954259a406ee0ba18c21fdbe1
BLAKE2b-256 c83d0b8a27683f700f0f35876df34841a880a998f0e0ad8368f39927790db2fa

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 987ecddea88dce59a33303642f29923069a672b37d7e5446dca0e593e0dc66c4
MD5 5d1f8a8f81907dd250697976289668dd
BLAKE2b-256 8261051c5dc5100cd3cc4e2a126073dbefbf069c79d7e913a293e7d49208e0c2

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0434431f7cd3d3d9ab65234a28304cea38e7a369ed33a84319b36b400be0827f
MD5 1013dced5a8d381f03acef02324add0a
BLAKE2b-256 cf70cef9ec8c20a626968b3332a307caedb46a985c45e4f149669d61454bf3a2

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea38e5f663169eef35e2b437bf3f771bd6b9b37bbd15b516f746c6ae69c65262
MD5 27a5908e7656fbe5e7c4b10866c6fb1d
BLAKE2b-256 ba5da77c057560c0f0bb338796bbd9e47d662da0f3bd8bd9aa734ee074467236

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 d9981acedf05b56d4fece5cae2ae58cfce14c7d0eec3bb92c57b5b295d64c404
MD5 7353f5da7854901a215cc2e39e76af3f
BLAKE2b-256 d72f153d3f058dc80202fa4c74e17234c769dc306c78521e8941728202775513

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4ced17aee6b1d001bcad312811eeb1e2817c0057ea7b7e229359f3293c3b06d4
MD5 c57e523b4615fb0ff7165c53f7795503
BLAKE2b-256 c0146a2e936ec4374ae24bff5bd97613d9223df88241db2efae57c95e8ec2d26

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 23233b1d6ea5312dea40c00c2d010d2e4643869293f122b1571012cd3ecd914a
MD5 0e44317153f0cd441bd6003170a22e65
BLAKE2b-256 ae6dba67d16caff42506b754c8fec1a8237f725bc5e87c15952a9ec685639aac

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f4ab775dfb43938f0f839f12663c4e7f024e861d5056717a1461273ab2505dd
MD5 2f3562ad05305c7ffab67f91a3470d2e
BLAKE2b-256 f0978ab6b5426c03fd653df6392fc6985a0f7b87871f5eeb546ed18f3a6dabcc

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9720980958fad7cba31202acce169a76fcf13504f1f85531ac900727aed056ff
MD5 b203cc87f72b6cee6d5925ae21a6bc65
BLAKE2b-256 534ddd08bb65648a3d92784bf3edac7e7924594e7d6c79d594703a2b5ba53919

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 0aa0e37ff6d75be86c781fec5a5053b0920dfaa4c0eff1ee1948222e166ce787
MD5 3a66b62158f46d3186c959584776b4c4
BLAKE2b-256 4690389dc52e950fbe1584334e8ddb901315121e56fe7a8dd929376fcefbf0ed

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f4a7b3491379409f071b32bfba3cf75eeec77872b54818f346c97740804eac92
MD5 9f30212b84d82a472104ed8825e9af59
BLAKE2b-256 17e9ce7c8a4ee564bae3bcec1c53edc570285d994b2b4cd2b92eb275fe1ed9bc

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 285ff4e3dbe44f551103a7ce78a7335e95116c05d1c1cb3e6a938bc2b6d9a228
MD5 ea8d1ca4365717236c107f5a00e70e93
BLAKE2b-256 b351290fd7efef088cda5a19e3cb5dd3bcdddab7664cd3deea9d3c0aa578135b

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76cdb282dc0354041f36134653b8dc3d3b6a190f2aa4f528b25da0d16ea137c4
MD5 775578f1e7573faad8f78aad70c9cca6
BLAKE2b-256 2bf46355a6cf1860e64bb07122923bab31ddd99a360fc173aa696fc1903d987e

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0483b7319d9ce17e0ef57c29175659d6d56b186f72cd75c8c41be5b08f21463d
MD5 d42134549a7c1b9d35b43effb11357a0
BLAKE2b-256 fb48e1e26add48c9756d47a7710bb54892ced9d2e42468aa661a7d8b6bb700ac

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 e8bf5af77220e5b0bea6e2cd4e0f4b7ecd4f5d0a38d4ed6deaad9858cc8b68b5
MD5 e3e2fa3dd3909077b6ef4804d424e85e
BLAKE2b-256 675f588ead4501681521e1172ddb26f4a85ab60c103d30884baa170ff9079a14

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 423f8456948cab6253a8ae96a6fdc16229d36ba0ccbe6555be66eb21627ee23d
MD5 8384a8c58dcb44b172c5d94ce3ea3644
BLAKE2b-256 8e976e0c1de2741c7154afb14a04cb9eed641b7b1a78eee15e256797d6d40d1f

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 94be62be2eb813a8eeeb55e93b33c70c6a313b44d30293fb37d07c18784c330b
MD5 3b36418c887e66cf5fb1770a9ca6a776
BLAKE2b-256 58b5930189ef4b758e17c573b80ffba971104c24a2658b73e96aa0f1cb032d24

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28f3f5c796b723b7b6e5272852e30932c7c1d502a1a1fef719fdb922002dcc60
MD5 9247bd658cfa9ac63ad75b20966ad8ff
BLAKE2b-256 700d76e087728eb16bd5e8001cec18ecd23e61ecf54e954d5a22942ebba2584c

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87da569b5fc4f8de11337a2effc851f908d908b80705c2c84d27036a71768647
MD5 02d5ce7c650b377e574ad23bfb1ae4b6
BLAKE2b-256 be803f072e37d2ed85af6562974d4a25fc2f539a822f654d2a5d47cb04310b14

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 bbfe1484584e19a9ffeab0321d3e4eece79f0fe04e1ad3b990529b5b58024048
MD5 c86e241b4a23bb9c2eea742e6a66d64b
BLAKE2b-256 d509630e1f620f1ac68e2cbed1aefbfec140e362fb1c1f1c018bb055b0c82e52

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bda2cbab84ba4a9f8c4b70d72892141e6a7df8e9eb3e8857a9cc28de55ca528f
MD5 1e666ec04f96ffa26feed2cdf6eb19b7
BLAKE2b-256 d6e64aaba10fb079b49df8b3b3736ef36949d8784c510843621d9ab6eb1ba1ee

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0808ffbe1ecb5665099fcaf8e7eac8f981d707648c498148101562b302da7490
MD5 a9896fe2dd9963850d298c79ad866165
BLAKE2b-256 4a0990992e9ba9dcfe3e1854e143eca472d397658a6d0b77f639602e477f9853

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3498020abebb1c8da56bc77c2fc164768bd095e7e5c9c942ac83d844dcf9c89
MD5 17d25cc245a99188f379ce95cd20bdee
BLAKE2b-256 8a4dad4a4364831f84d37e209ee1db4c9f0100aa5c99d45cbf1c8f3f81d0c513

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd6305651b4a4dc90cbc07e299a0e29c36be5a54913ecf0e4561d55aff134542
MD5 cdfc8277f14e89e895c79637e01b7b74
BLAKE2b-256 ff826ff275dc6a5de55f6e6d1a00307d533e07f05a2b3aa0515518327baec715

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241014-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241014-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ec135f2eff5e83f9a4ca593a331f10ef55a7f0650de3d1893518baa2cef4c8c1
MD5 5c152cacd39b8b4c8e1fa9fc47123fd6
BLAKE2b-256 c21d0f610c188f2cf2ed736fc2a8b5f22be7031a5e4d383998a15fc80873fde5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page