Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

ONNX is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of ONNX pip uninstall onnx.

C++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 ONNX links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 ONNX is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how ONNX links to protobuf libraries.

    • When set to ON - ONNX will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here.
    • When set to OFF - ONNX will link statically to protobuf.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON ONNX uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx_weekly-1.18.0.dev20241021.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

onnx_weekly-1.18.0.dev20241021-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

onnx_weekly-1.18.0.dev20241021-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

onnx_weekly-1.18.0.dev20241021-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241021-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241021-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241021-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx_weekly-1.18.0.dev20241021-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

onnx_weekly-1.18.0.dev20241021-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241021-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241021-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241021-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx_weekly-1.18.0.dev20241021-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

onnx_weekly-1.18.0.dev20241021-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241021-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241021-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241021-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx_weekly-1.18.0.dev20241021-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

onnx_weekly-1.18.0.dev20241021-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241021-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241021-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

onnx_weekly-1.18.0.dev20241021-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx_weekly-1.18.0.dev20241021-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

onnx_weekly-1.18.0.dev20241021-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx_weekly-1.18.0.dev20241021-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx_weekly-1.18.0.dev20241021-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file onnx_weekly-1.18.0.dev20241021.tar.gz.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021.tar.gz
Algorithm Hash digest
SHA256 bfa8a0339c9d19c096c33b6900860e2e2b8571476f28ad9ae0458214a9a2b09f
MD5 452738f2a1bd33def88896b39c8e49d3
BLAKE2b-256 e3da34e13fafc7dba4bef7721eb4d1094ba5383f65a27f35d9895dfa3e35520d

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4d0fa209fca564bb43e4652537b0e399ec8bf3eb08ae802cb692f4bb8fa7916c
MD5 2b3ec321b1b63ee756ec5063e844aef8
BLAKE2b-256 e80cb2071deccc61855a7dbe8c24e9219ca3c632937d8fa2b9eaa313eb0d130f

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5acd8e0b16ea4f9887e2e27412dd9e4b3f1366f9e0d83e8ee65bd1b31a3217d9
MD5 41e471f4025e238766212815c4726e91
BLAKE2b-256 a892873023d565047617aafca1e0f1afa1fa5ae808824d27f6aa5b29d07a9db3

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0445d0a606d21e34d62231e471659205afbcc30cfb60a9d0daee3da7d2551705
MD5 b45d70de31c28c3dbe68e28a6e477f30
BLAKE2b-256 54510a14891b23f899b77fdc0039ad42aa639f0e3fcba4097a30db9a5b642542

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c78f738623a51dbef59bb3b99f298dccdce53818b3cbe878c38353461034da8
MD5 f54fe189eb49464662f308938dd5e916
BLAKE2b-256 4a685ddba4f28612c98d65eae9f35cc3cf09a51d2ae1979665e8516293f08153

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 348d130de4082f26a2847f0628b87ab4d5d2c6d6d48f6be489f4ee481852a6b6
MD5 6f07b92c2a6d04cf5f28d404f1885797
BLAKE2b-256 4765d042e3fae98c1a391bdd9edbc834c1bf98c2a99d4f07eb3fb33117215093

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4d4c3bc19149ddadc382c58f639db5afa8d79f84b883cfa83bd7002e4b8e51ba
MD5 d4ef369c138c47c1b36a92c423c5ef7c
BLAKE2b-256 9b31f9c4278d644fe8c16b3d5c3754cb989fffb95be64b6b71ab143beb141fa9

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 283e50a22037b5fbb1e73ed34417084964c47c1c6dc70c75a4bb2f91bf418631
MD5 b57daa6ba95bb32ad82b6477b0abb532
BLAKE2b-256 d8153fc14915010031abfcad222f3dd3651ee5e29fa0fd526abf2e6ba991d3fb

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37acd254079ec2b17029b79641bfd5d8a21563449e6de80a12be39d25d68bbea
MD5 7b8f96afff24d5b24a455aed94ff26ab
BLAKE2b-256 17dbf78cd65cf34e3f1f43cf073381e45480b0667ffbdc09305127bc039afb08

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5658b3777ec4688855e12b412d4724fc0afcc1c5dd2d4c538d9a60594aab3337
MD5 662767ca57aebd83ade035ed8f9e62f2
BLAKE2b-256 f6b184d088689cd2e6036b1e6ef1e704c3cf57e703a241fc228f111fc1a9af2d

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 1b400b7792a571b247c698233a227f6c0914fd1a96c86adae8883984a65bc299
MD5 db557ee0859894ac0cb071973401dab6
BLAKE2b-256 9b55518bc7744f7f741890da410ebfa01831c160f04e28360b0f3969ec6815ee

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 da1a5e5a2c58a9d6b96cc8da3fe42480a21cf07cba3bfa7785b2fcb68e43ef51
MD5 994a49e1927ca73c554fa229e6472ffd
BLAKE2b-256 17c9f73e88ef2464c7cadc934e46e8cbfe9df1db7d71d103202c424ccce5b466

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3647c72119e8904a0ebb79b7138aa798647dafeb0aca9490de625d4e32461a3e
MD5 615a53286709ed727a336460b106382f
BLAKE2b-256 8b6e65e0cca84951411dba70d784a39ee53efd559c69c59b36dba478e8fc2b89

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21d808d67b9c6e634d89e03344b209ab494e8d35316ccd64c67af59aa32e81ad
MD5 18abb7162947dffcf0d0979c4e6884f8
BLAKE2b-256 8a93ae35da6efbbb8ecca2f4c43cd75928120dc6a1d625b363e45066724e88f9

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb569d1aafb1453f2f3ef25d9beef8de8aa02652cdff54615162e0019bcb8260
MD5 028de41b51f85957385a0f9c97a9b3c2
BLAKE2b-256 e4038fb46c3c235b5951983be6f37ed9592701d9ed36b70992ff3109675f1a35

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 a0b4ecb4aeaff529f670338ad52a6cea7d0a7968855af47d2f4034e3b3bce347
MD5 11f9a5b5f925096f993153de2a73e10c
BLAKE2b-256 bc0f4fcc099cc552e4e2565dfb3cd9d10cca392cf69f7b51d58feff8cefbda8f

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0846fefd035bfecb9e436f8be1eacada9faaa3be4f80067e0f93e348508d48fa
MD5 466914569856f2c9a3900120def53152
BLAKE2b-256 1b7385c1f3206f5a22eed2c262d24c372f118438ecec66062124cfd7f23a6774

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 385b7180f2066880a082eaafcb2b6b4904e640c0ced3a97a551075b24fa34906
MD5 aaccc6cc092c6e2ab5b68f8a2ad3f288
BLAKE2b-256 6043d7d34e422e2b8924b03ccc07839f2332d6d4b350b74580fa174a9b45a6dc

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57b59d4be38c85f59c6b1a5d0b02cc098666051619be89b0b10e7603277f96f6
MD5 e15ff9894fb242ba4c544e52077c1b72
BLAKE2b-256 9294ea55338ee0c61824fa3527659578dcc0fbd4c8cee0f4e73d692ee33ada28

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be0bd4e35035d77e694663e3483c4c79e4e5f9fea671509b6b62d1df6cedb5b9
MD5 a2a2843d9179ac065019b326fa37a545
BLAKE2b-256 e662111fef50c0e4ac29699aa91f75031c4e30049e06adc166a9a067d30ec314

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 d9ba77494dfee7e846b85bd8e699554a943f48df5b3221c4920293f66094115c
MD5 d59f89473368d48522d0eff642b59efd
BLAKE2b-256 0e54347ba4ce284b3378c5b82cc5d5378055778b0ddc5dbeb1fe9cb7d8e11728

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6ff5c7470976e84bb0b0618d1d34b421b55fa4bde13d893d961992fdf0f58625
MD5 015a7260bbc14d59c71a0ce991d32e1d
BLAKE2b-256 486e1074c287dbbc2e2dd8b07b839507815f80bb10741e5ca22d70879ac623ae

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7621ac565a46d789e3ce3a7afd1814ee240fe19ac9da17bab9fd94fc25443b8d
MD5 98d772891aa1393af7f0eafd2d981cbd
BLAKE2b-256 85d91c664835ed27227049599dba07578627eb594d6b92ef3211792f8a83cf95

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98947bdf086918618ecd5939fc4c72596b4c5948fa0d5b365afce95018728fe2
MD5 95c4814b84bd23ef5fc47f7a284b5f22
BLAKE2b-256 6360f4d860c94ecb9dc08afd27730d64f4a94f63487f76d3369d17eabac8ff0c

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d27627f20d6b5fc2859571517e116ed3af272d1478a8625464d3619f661ba836
MD5 0b30a84253dcdb514974ac8042a36e50
BLAKE2b-256 f37ea27f936c349dc7dc37ae65957b435498d735cbe85e5c73541b19dfa4b57f

See more details on using hashes here.

File details

Details for the file onnx_weekly-1.18.0.dev20241021-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx_weekly-1.18.0.dev20241021-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ba423af58c779491a4f0a0ba8e400c918dc67d73b74871a8741da950ef2078d6
MD5 bf355571b5145f665f213caa14c870b9
BLAKE2b-256 788dd2e674d0098c8cc22ec4cdd5109add20cebcbc7f8aae9779a351047120a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page