Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the SIGs and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack for more real-time discussion

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install numpy protobuf==3.16.0
pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge numpy protobuf==3.16.0 libprotobuf=3.16.0
conda install -c conda-forge onnx

You can also use the onnx-dev docker image for a Linux-based installation without having to worry about dependency versioning.

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.
If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. Specifically on Windows, the version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also let's you control the verison of protobuf. The tested and recommended version is 3.16.0.

Note for Windows : The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "Developer Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Building Protobuf from source

  • Windows
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobug_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=ON -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release
  • Linux
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install
  • Mac
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.16.0/protobuf-cpp-3.16.0.tar.gz
tar -xvf protobuf-cpp-3.16.0.tar.gz
cd protobuf-3.16.0
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths. Example on Windows:
set PATH=<protobuf_install_dir>\bin;<protobuf_install_dir>\include;<protobuf_install_dir>\libs;%PATH%

Build ONNX on ARM 64

If you are building ONNX on an ARM 64 device, please make sure to install the dependencies appropriately.

pip install cython protobuf numpy
sudo apt-get install libprotobuf-dev protobuf-compiler
pip install onnx

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt
Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
    Default: USE_MSVC_STATIC_RUNTIME=1

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited.
    Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF.
    Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=1
    ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.
    Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors.
    Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • Building ONNX on Ubuntu works well, but on CentOS/RHEL and other ManyLinux systems, you might need to open the CMakeLists file and replace all instances of /lib with /lib64.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.10.0.tar.gz (10.0 MB view details)

Uploaded Source

Built Distributions

onnx-1.10.0-cp39-cp39-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.10.0-cp39-cp39-win32.whl (11.3 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.10.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

onnx-1.10.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

onnx-1.10.0-cp39-cp39-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.10.0-cp38-cp38-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.10.0-cp38-cp38-win32.whl (11.3 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.10.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

onnx-1.10.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

onnx-1.10.0-cp38-cp38-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.10.0-cp37-cp37m-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.10.0-cp37-cp37m-win32.whl (11.3 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.10.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

onnx-1.10.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

onnx-1.10.0-cp37-cp37m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.10.0-cp36-cp36m-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

onnx-1.10.0-cp36-cp36m-win32.whl (11.3 MB view details)

Uploaded CPython 3.6m Windows x86

onnx-1.10.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

onnx-1.10.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

onnx-1.10.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

onnx-1.10.0-cp36-cp36m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

File details

Details for the file onnx-1.10.0.tar.gz.

File metadata

  • Download URL: onnx-1.10.0.tar.gz
  • Upload date:
  • Size: 10.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0.tar.gz
Algorithm Hash digest
SHA256 5919dcb0987265f8e9da4776cce7431f6d1db03beb561419739aa0874514d2d1
MD5 675ba9da313780d2a8570ea9c39db7b7
BLAKE2b-256 cf9882671f253342463e63fa972713f2bab1d936dd178455501d36ff288b209f

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6189f7dbe98174a0af9486993b7136ab950d3551dd4d659d0ce42ea7f94d0156
MD5 7309bddbe69497b6ff5e6ec5526378a5
BLAKE2b-256 2863fa7159282b92491b21d9321b1eb28d5e5ea9f8f73d9b5d72be7d4b51c057

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a2e6ad214c35c885ab2a07522d46b9a35368b7f3e30f25663c167c0b8dc94423
MD5 544bedd820fdca3e2e33c448be3bcdfc
BLAKE2b-256 832139560cb1c8ed95f6a88da88587126d71184732cae99c0733461ca5131a9f

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c4e054d8ba6df4e6c162a623e72ce55ac9c6706e8e32386bad826549efbea9b
MD5 63c7c50108496b1c74fc07f4cfe0cbb8
BLAKE2b-256 a02d26b31c69a87c8c32d3145d060bd698bfaa3c76e04690362a735b64ed3f1b

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4cf97cabe31c68ca6139d2752f2d1af5bb6da1a7b798058994032eebf9fbea5b
MD5 5a13c0162f5e212e8f74d27bd8cc4beb
BLAKE2b-256 c604aad171bdc303a044e7dc9203150c05f4e49b5f50730ac10f447d92bf8e33

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dc8973f136679ec3c687708ca067eb18141997963a9494edbb2b98e3fa65c366
MD5 bac166c41fd6bd11d852a83e592dff8e
BLAKE2b-256 46b6c5627557929d6379a7ffef27c7783f31c5bb1a292f940238da2a52f7948b

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp39-cp39-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0805937906135f4f8ddc594aaa40b9f966cb44f02d424e26a19168c82561c3ec
MD5 f9d6956bdee0ee3189f0f70a1c953b6e
BLAKE2b-256 e7ea57062fa862758c0e26f3a300b921b173bb22ac0a4abc50aaba4ac8c6dcbd

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f8fbaf093b797bf8053f37af93473effbbf6f6ff1305a7e6d97838955cabd370
MD5 b1baeef1d017cfbe1a4bb35cb9521bbe
BLAKE2b-256 f26e50010eb9ecda4f4cf7ec48b9756b5800c6bb1b1c0d0ca47fa9ff0e252985

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.10.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 177389882f83358d8869441e71ce0f3872ee0f122c145f1a21108fcd0d5cf19a
MD5 80e765e75bd95c7f0e42e1ba8bb8f3a9
BLAKE2b-256 b128b674d927ba0f483e3289649035579dbe1b01ab10370f9c18f39b5589c68f

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5d61bcf4d4e296384232c376d9f550ddb05443335efe608b0ae0a5bf67cc25f
MD5 f86830b1cbce084d9cd707f76f001d90
BLAKE2b-256 e147403193914505fcb0bb8ab4526e7a0f30e5c3e31598c324c475ff13cd5277

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f125b3792b20a3a1e8dd0337e995cfa1984e60810569b74c874ebb77c8b66fc7
MD5 8d00c91c5761448868bce656fbfffe61
BLAKE2b-256 2f3533b74f076510e960d6b9188dadccfde9238ae344aca2bb2e56c3433492cb

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 babf21053596202237ace57c1a40461d7bfc1db0fc535d119d97135b80e2dd01
MD5 6abb8f3a365693ec57480921c84826e2
BLAKE2b-256 30b415be944e7313031061ea66b2eee981018ee671fad0c31de2656a18551a22

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp38-cp38-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4c18d5b4eca97d58de18e88c530bd88d65e2bc851630af12d6221a95eb6599b3
MD5 fb07acf7b65ff514c38dd28f5c3b93d7
BLAKE2b-256 f82cc081db09957864b40c0149750d7dda3cd1acbff5b0610c90681bf8972995

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4bc5349218dd1585d3563985146cf3f88f714e02b412d05cd348ddc0cb139e0e
MD5 b1b6dc45687686ee4f29c74c0cdfea82
BLAKE2b-256 810466a06836ed2197f313ac1289f0f71b394af9eada498822436c69b03e4ebc

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7be8685cc57b785c96f845e9fa0311b9992f92e8fcf050b164704f6c0e60501f
MD5 16135d6775a8eac54093d1bf4b91ade0
BLAKE2b-256 5b2cfe021ad960f285140cb012a5b116ed9ca0bd3f2b1e53b851efd42258b00f

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a8769648f8132eccf75733b5433f92e75a4fc8826e36c8f73d967c2fcbc62a2
MD5 e3e5b06e08b08805f004f4906e1fe24d
BLAKE2b-256 3f4c087523c656cfefd6070d3ab80a1dbddc4edf6b62e86f53c80cfa8b0b3995

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b084c56adbc688509ce1674c0b5caff239ab7da34f36095f7a86cdaeb7b335aa
MD5 8b31c2fc51e1dabad6431a775b484936
BLAKE2b-256 4379b274e2a918700012e0dcc0ae68f597110c3e45efbb5a7ce3b8569b3dd299

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b721b2a6aed3634c4e11dffe62399a67c1982d6a155baa65e7d368c7be0bee11
MD5 4739d622eda6c4b92f91193faa2c4336
BLAKE2b-256 5056be99b0018986b7a737d758d36934f942600ea8361d3c0236067024b0cdf6

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp37-cp37m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8a302427ec2c7fb3bb8eb0a73aa6c4af456c6284b1821549f442f8ca5d781fbb
MD5 35e8d30b2eec12df3339e8086c98c0c6
BLAKE2b-256 caf878b1c2457d1c8efbe7cb0a76214e430c9ff989c70487c71a73adc5363c5d

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c236c0575151bffb00d7345ceb616c4d19ccfab5f568fbe2c405c10263a1e3e5
MD5 f8bd35eeec517b981d21a5305879376c
BLAKE2b-256 4dc43e77d9a549f26f8c6636a158488e46fd3c5dc1968401ccd1dd11f6900537

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: onnx-1.10.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 5f4dadf10df1ff22a0417cf43b35fbe9b0f32d2a656215e15203df7eb1ef419f
MD5 05d1b9f96b7466ec8c27323d42ae33c1
BLAKE2b-256 59eec398052af4c0cfd0440e4587241bd38a3ce00e09a5ef3b8293706d73e3f3

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 613ef410c5fe3059c334645d9cb58d7f6c7ebbcac00fca3729d2cb4d72028759
MD5 db8be610eff326ebfe09da28bc62559a
BLAKE2b-256 cd06fb30f788fb1a2bd171b7bbf809a4b128849eb9f85a8c221b21c0f60b5d94

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc03e728e19c06fe1724f1971fa12814ed38133cae5db72bc11dd184059c34bc
MD5 1ecc9c17c3c3695a46d8dee6cc52bd7b
BLAKE2b-256 ea8c5b4b763d20f80282b92fcf04cd466153f1309a3de74c9a0bbd5715ca41ad

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bbe68edac8d734fe733e22841c0be90408f94429521c9947e787c44bacebddfc
MD5 40f7988dd106cd72af636df32f4a3173
BLAKE2b-256 af4aacf67fd9a4a85549e194a0b3b7a8e5cc1345bc27bee86b195f321b5c8d87

See more details on using hashes here.

File details

Details for the file onnx-1.10.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.0-cp36-cp36m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.6m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 61e1eb0c5a917f4d2a59d6065e7c0c863b9182853667d462ad4755896bf692f0
MD5 5a5bbea31f9e3622f0f7fd54a6332260
BLAKE2b-256 684a753243ce24072d0d664f07996050e199dd7b02c165c14dddeac2e745fb60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page