Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the SIGs and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack for more real-time discussion

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install numpy protobuf==3.16.0
pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge numpy protobuf==3.16.0 libprotobuf=3.16.0
conda install -c conda-forge onnx

You can also use the onnx-dev docker image for a Linux-based installation without having to worry about dependency versioning.

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.
If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. Specifically on Windows, the version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also let's you control the verison of protobuf. The tested and recommended version is 3.16.0.

Note for Windows : The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "Developer Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Building Protobuf from source

  • Windows
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobug_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=ON -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release
  • Linux
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install
  • Mac
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.16.0/protobuf-cpp-3.16.0.tar.gz
tar -xvf protobuf-cpp-3.16.0.tar.gz
cd protobuf-3.16.0
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths. Example on Windows:
set PATH=<protobuf_install_dir>\bin;<protobuf_install_dir>\include;<protobuf_install_dir>\libs;%PATH%

Build ONNX on ARM 64

If you are building ONNX on an ARM 64 device, please make sure to install the dependencies appropriately.

pip install cython protobuf numpy
sudo apt-get install libprotobuf-dev protobuf-compiler
pip install onnx

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt
Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
    Default: USE_MSVC_STATIC_RUNTIME=1

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited.
    Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF.
    Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=1
    ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.
    Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors.
    Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • Building ONNX on Ubuntu works well, but on CentOS/RHEL and other ManyLinux systems, you might need to open the CMakeLists file and replace all instances of /lib with /lib64.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.10.1.tar.gz (10.0 MB view details)

Uploaded Source

Built Distributions

onnx-1.10.1-cp39-cp39-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.10.1-cp39-cp39-win32.whl (11.3 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.10.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

onnx-1.10.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

onnx-1.10.1-cp39-cp39-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.10.1-cp38-cp38-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.10.1-cp38-cp38-win32.whl (11.3 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.10.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

onnx-1.10.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

onnx-1.10.1-cp38-cp38-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.10.1-cp37-cp37m-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.10.1-cp37-cp37m-win32.whl (11.3 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.10.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

onnx-1.10.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

onnx-1.10.1-cp37-cp37m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.10.1-cp36-cp36m-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

onnx-1.10.1-cp36-cp36m-win32.whl (11.3 MB view details)

Uploaded CPython 3.6m Windows x86

onnx-1.10.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

onnx-1.10.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

onnx-1.10.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (12.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

onnx-1.10.1-cp36-cp36m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

File details

Details for the file onnx-1.10.1.tar.gz.

File metadata

  • Download URL: onnx-1.10.1.tar.gz
  • Upload date:
  • Size: 10.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1.tar.gz
Algorithm Hash digest
SHA256 9d941ba76cab55db8913ecad9dc50cefeb368460f6338a91783a5d7643f3a044
MD5 48b290058bdede284ab62d457fdd36cd
BLAKE2b-256 18ecd1d74c6355a139a633d1335620e6d891e3a3556889b3d0ede878ab53fc11

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4cbb1a648f8964f2acaee1f519c3d0cefa2b5a8dd8777b38cc4adda085982263
MD5 daa758e49030dff72fead2d3ebc5b4b6
BLAKE2b-256 79fa64baca0b8284e8e1dcaa25e81b9c903efa0bc6596e0235bc662006089ad2

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.10.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7b5a2ae95efe3eee65d908287227398435926b5753fe97d49749060ed1838262
MD5 70ae2dd1b72e0318e5c34321556a6bc4
BLAKE2b-256 2d5f8cd79ff76b2a9bddbea4675fbad89fffd680600dd0a9380988a8ba625179

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26c9b55d5fa17153908b7af599a23ed928d9b6158cf233fd7809de216f4e54e6
MD5 7cb7eeb558d0eb5f63aa5c5ca7d871ab
BLAKE2b-256 b3ad56edecc602e3bb403e199a1b40e62f6f76864bf08a425a438d03fd56555e

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aa81aaf4b879ba9f3ea0f30f4bf29c36f828c504b7faeb47f23adc0038d0a226
MD5 a6025c52413949fa525c2bfa198be061
BLAKE2b-256 cb175be553303a3864d2e2a68818308d6d2e50d091287902d5be5e361ad4a15d

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d768204d157ea21c19b1377094ae5ff6837223e805e375274d6a91a11ce371db
MD5 5e76c29a8c5413b9c2b7db9285f54bad
BLAKE2b-256 b2add135328fe7d53525781ab672ba1bf017d61f8161320a6d1c747c3d814316

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp39-cp39-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6b09b8464004240f3d48f6f1a6709e2a09f635dc3a88fd0d94d4d5d7dce9c09c
MD5 8fcf342fdcf121d9349bc6f968938365
BLAKE2b-256 d50194e5225f0149db16f427a6fb0e86e6dba8e12c9df0e06ec0312a16297e53

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7fc911b35abb613aca642678ff85f6855c7bb1e39dd07de8761d0867e2e3c677
MD5 34f1a35d3652ad73d47dc238a3badaca
BLAKE2b-256 bdb7fc11feedea72026c414c1a38ba508435fa6b655fe740fac289efd5e98c3e

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.10.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f4dc742bfc786291126069aa7ee9d0495cd3e5871ee82e3c7d25c8b1cc9104aa
MD5 485e4c4b19d2f33e907bd1b03e433e2b
BLAKE2b-256 33de8e0f6735f83dd08558bed9988063280e1fac51a4da3defe7657bc36af843

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bd15b90dff6b51a3da81ce127a2a049b2b9f038a7b3e002c877a32cfb6fb0fa
MD5 34a91bde491646f68e217abb46ed149a
BLAKE2b-256 03f9a79cb5af0609a0ffac246f8cc0139a452267d2225863da2e16a540b415a3

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9a3dfa2ea2c6096a6495ca754e9b81032cfbf2c59bd8b92e36e81611fe04675b
MD5 a33dfd3578d40be36e3a35d111dc1765
BLAKE2b-256 aa7c529d2eff6467c337243e08831c1bbf04cb6f581fc6b2c4e88b023e1ff127

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b57f3a18cb53147b5659edaed92ef566ca5dce23412dbefb0c8a3097f61b7015
MD5 3ef1bd19722ef45d5e71f775c2f38a12
BLAKE2b-256 6236c9c7277494f0c13acfb3096cc7c4fb3c5e6822e02dc9a620050597810388

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp38-cp38-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 aaf3b2e9303b8f198e68b1c86da81407fa6a910b7342b8e720d96b11cf83cb6e
MD5 839ef8f2d8e73818f3ec2abd91128bc1
BLAKE2b-256 8c0672804822d3a39ff7d3ca74e17aa64c695afbd431ea1beda819622e44db6f

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ff5ddd411599bf536954b6f069f95379c6529aac7e71b1a35e691709d6bffb87
MD5 42cb69742a43265e02c8c30573b02533
BLAKE2b-256 7c2872ed54083cb1ae9ff7b5769a4971dd400d22423b5524d2ccad7940c6e1b8

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.10.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0176c94e3c4c9ef999ddd8b1d6667ecd7128f334071af532dd9d7c0780da49b8
MD5 2e95ab93e79107b99ff13f2b1c49235e
BLAKE2b-256 da39cba05cfea43da4230aeebc555783432416426d3d90898869a4ba1458e504

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d882b2db5dc23af2b2850370429b02a213c112f731b48a2b15e73498406c5535
MD5 858bda3079a4b0dedbdb2b896dfc3c8e
BLAKE2b-256 53ebefeb8d9dc368bf1ff0c9e4b4ecc6784a676c6123b8437cbc10f5ba951c4e

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f4489d0a004ccf8a39ce9271d6fde7e0a187fc3f94927b65998e8007d41b938
MD5 55b5b0f133b710b098bf2d7f8943d50e
BLAKE2b-256 020873957f2171c390fdc889e14d85265521fa1daeb9c21e5ae2751c5fb5c05b

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9553dbcc80b9a94a7c44779d52341de93623891daf7d4196f2089c17523e56bf
MD5 71d685ed0ccfe06e7bcbe5f2ca2e7fc2
BLAKE2b-256 f951bd47cb525df71ddf7c793294b6246cf9f1b612c04a905c591e9224a3e520

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp37-cp37m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 45ffeef54c7f52193b52abccc9e53a8692913a6d240cc8d8b669306a6964a406
MD5 d35c34e784bcb70b33629a5bbd645943
BLAKE2b-256 8a7f416cc03214e199c2a33a275df4d9ac565e2b60a0ad9566e2c5862045f245

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0170ff8e6fba268d2feae7a934e474988c2157bc1dbe399ac9974be0a53a08f7
MD5 867178550be23034b5d94afdfac55467
BLAKE2b-256 d6b3bf5f15f6d5e0df09f7f02b419accecbd64c119410dc9894f5e952c25c7f5

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: onnx-1.10.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 11597a1ef11381aee22eae0dfd4f06c7c396b19a833f635fc99f634f843ac0a1
MD5 3448872a3798bc33a0d6dd2f36f4a004
BLAKE2b-256 c11456369488a40829838aa0034594f9ec639b4a3d244218c56ea735528581db

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8deec423c16a335aee3470d32204d77f43639a46c8b4ae92362bdab73a6666ce
MD5 74952d5bbff6b82161e1479d3e9ab6b0
BLAKE2b-256 48b6ecf660fcc1e1c2a6de9b844b8addc7d2e2212e93203adb057c13d0bb44a8

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 606e792bb2602ae5af5f44c0ef604d232f1b1a7cfde68d059488cc088e9793c3
MD5 21564b89b6cc3bb7d197f6d7277f794c
BLAKE2b-256 faf44dd2fb863294a39c03d3adb9aacfaa543f64e8d9c07ed98739b5bf413dfe

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 baca16d0caa8274facda67dd8daa6f1af47b5770a926b24450149fa5abce3908
MD5 8543a2e50cc470fd07ccc95a4cd994e3
BLAKE2b-256 f5a781bfdae972eb519f99d7509856e80f360559bc4556b1d83b284179304b03

See more details on using hashes here.

File details

Details for the file onnx-1.10.1-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.1-cp36-cp36m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.6m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for onnx-1.10.1-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 837fd82c67b609d1bc54b478de8489eb17fe0775f5d0772a1153de8478c59e24
MD5 ffa5ff41c1b9771c3e092dc8a6bd2079
BLAKE2b-256 84ede16f1c93549d5f30a8597389788cab52d410bda966d87b079044dacb6e86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page