Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the SIGs and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack for more real-time discussion

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install numpy protobuf==3.16.0
pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge numpy protobuf==3.16.0 libprotobuf=3.16.0
conda install -c conda-forge onnx

You can also use the onnx-dev docker image for a Linux-based installation without having to worry about dependency versioning.

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.
If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. Specifically on Windows, the version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also let's you control the verison of protobuf. The tested and recommended version is 3.16.0.

Note for Windows : The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "Developer Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Building Protobuf from source

  • Windows
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobug_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=ON -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release
  • Linux
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install
  • Mac
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.16.0/protobuf-cpp-3.16.0.tar.gz
tar -xvf protobuf-cpp-3.16.0.tar.gz
cd protobuf-3.16.0
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths. Example on Windows:
set PATH=<protobuf_install_dir>\bin;<protobuf_install_dir>\include;<protobuf_install_dir>\libs;%PATH%

Build ONNX on ARM 64

If you are building ONNX on an ARM 64 device, please make sure to install the dependencies appropriately.

pip install cython protobuf numpy
sudo apt-get install libprotobuf-dev protobuf-compiler
pip install onnx

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt
Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
    Default: USE_MSVC_STATIC_RUNTIME=1

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited.
    Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF.
    Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=1
    ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.
    Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors.
    Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • Building ONNX on Ubuntu works well, but on CentOS/RHEL and other ManyLinux systems, you might need to open the CMakeLists file and replace all instances of /lib with /lib64.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.10.2.tar.gz (9.9 MB view details)

Uploaded Source

Built Distributions

onnx-1.10.2-cp39-cp39-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.10.2-cp39-cp39-win32.whl (11.3 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.10.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

onnx-1.10.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (12.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

onnx-1.10.2-cp39-cp39-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.10.2-cp38-cp38-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.10.2-cp38-cp38-win32.whl (11.3 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.10.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

onnx-1.10.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (12.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

onnx-1.10.2-cp38-cp38-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.10.2-cp37-cp37m-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.10.2-cp37-cp37m-win32.whl (11.3 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.10.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

onnx-1.10.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (12.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

onnx-1.10.2-cp37-cp37m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.10.2-cp36-cp36m-win_amd64.whl (11.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

onnx-1.10.2-cp36-cp36m-win32.whl (11.3 MB view details)

Uploaded CPython 3.6m Windows x86

onnx-1.10.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

onnx-1.10.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

onnx-1.10.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (12.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

onnx-1.10.2-cp36-cp36m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

File details

Details for the file onnx-1.10.2.tar.gz.

File metadata

  • Download URL: onnx-1.10.2.tar.gz
  • Upload date:
  • Size: 9.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2.tar.gz
Algorithm Hash digest
SHA256 24d73ca7dfd7e6c7339944f89554b4010719899337924fca1447d8f1b5db50d6
MD5 beb027e7efd88ce5f03ff31564dc915c
BLAKE2b-256 166abdae938babb4bc23de7b599439f3d1f1179748385e4ced099f3b4cb646bd

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0c176ef6e0c3b6bdfb69a43a66dcb8e6ba687437e302c79b4efb75027e1007dc
MD5 838030ee1d6acbcc4e51e7d8d6151930
BLAKE2b-256 328bf6ba84a47fcdc58645822c68bf3d31e7589a4bd4445961e6a043fe41810a

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.10.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 253fd36cbcfcbbbe00e55dde7a09995b22fc2cc825f6de28e5ef9c47f581f264
MD5 88e074a96938fd921b2bf35d37ac0279
BLAKE2b-256 141f9179cbb3452260ebf6206cdef186c2982ef7f7ab8a6e3be1724b5a2c3bb5

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce14dbe32a250b7691751e809c232b9a206da138ac055e24b9e60a1500b4d5b8
MD5 486e60b3bdd464d32104bf650c489167
BLAKE2b-256 de689d5e58df85275f86e8805d6d243d0cc417e8e8612ea85fcfdcf154cd2299

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 526de93b57dd65b136bec85d5b4c6fa4455d6d817bb319b54797d29111b9c407
MD5 ab071db19888eb83131b20f076cdf8c1
BLAKE2b-256 2e12c4b674795f0874190c43a0e32aa307e5deb0f441b8c9b442811cf673acd8

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 38e7d106fa98921faf909c2908bfd022eb2c594ecfbd275b60f80e0161cb8476
MD5 190960ba6b1e1224e65acafb142c9be3
BLAKE2b-256 d534ae4110fcdbaccd8532be1e8dbd66292f55b131d039da5c04432bae18a69c

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp39-cp39-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4138093cbf11e4300b7a7679aedfe1972f81abeb284a731e90dffdf3ef6c5ca3
MD5 e412a25b24937cbf4edb7c4c22e044f7
BLAKE2b-256 adcafa01efd6657ac10645202afcf2a2b01e96ab3d5f9b845fb1b14fdd03bd7e

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d0a3951276ac83fde93632303ad0b3b69e10894b69b7fe5eab0361e4f4212627
MD5 cbce125a4a229f0108b2405dd79d097c
BLAKE2b-256 7eb4a71d0a1a1bc584eb7969a3e22aff9536defae16937f6d1dd256337f2a487

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.10.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 57f93db536766b1dcfeee583c02bd86c9f1c9a652253bd4f9bf189a39446de1c
MD5 3a66ab7f230acfcebd952254d9d46afe
BLAKE2b-256 76f0405820a950aa7e3d3515671649738f811b2f5b617cda37c3d87f13fb9030

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd31e61ba95c62548543d8de2007fcb18fd2f017a9a36f712bbc08ddad1f25f4
MD5 bed98a93dc84dc2044770fbb2fd88a9b
BLAKE2b-256 cdffa6dd7a3da6df92e7613c16f9b49405e9cc1fdb2a2d772af3204f729e5da2

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a86e3f956e2a1d39772ae36d28c5b7f20fb6a883ae35971ada261b25548a8b32
MD5 ec75cd90004e8bc0187f05232243389e
BLAKE2b-256 fa4fff18d9c32b1b1b3a3b93b9984e36efca847aeb133922e73fd309a6238960

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4a53055b8f13747b607dbf835914c2bd60fa7214ee719893b003ceb5fc903220
MD5 222c61cb09da4c2ab782a42b20b03a03
BLAKE2b-256 2a13f88364d896207b54451106d19ff997eeafefea43678529e8248e13178a4b

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp38-cp38-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 3b73128c269ef84694099dad2b06568f2672ce95761a51e0225401695dc2c136
MD5 1381a7ff0ef4d7b80a20968973234559
BLAKE2b-256 e81e7f8029e3fa97bc2c6550fe8c702c8f2c0ecfcf0b704150cf1b2f4fd6c14a

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 24e654cca4c7285ea339fae15998dd33a5b9e57831d8ecb0bdb1f439c61c5736
MD5 794d2679f5639d0532f2f1bab0ce2072
BLAKE2b-256 5f4790ad6657d02221941efef6a8d031d50c93c0111c2242a8ae44e86ebf81ab

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.10.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 796fa0b80f108f2824cccf5c7298895a925aaea7831330a0bd720ceffc7be3c6
MD5 3baf02f3c551e6374d4ef316633d6af4
BLAKE2b-256 98982c3c432042eeaf80deff7fbfe98b8d513e47520bea6b194053bf3a3170a9

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc830b15fe11846911fdf068460fd5f20b0f711c8b4c575c68478a6bf2884304
MD5 fc9927810ef985c26c5d33e970e884ab
BLAKE2b-256 319055cbc652ca35eb78a8caa6bf8ec6b73b4fccb22fcaccc81a01aaf0ee386a

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6205849c935837a934a9ec1fd994f1e858ad7d253e02d0bacbe4add211e4255d
MD5 1f23747f537b3221a98952acae8aa321
BLAKE2b-256 bf45485394be214020c1dd137d3f5b82b5135d18f2bd6e2a802257b3bafea00f

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1e2f92a77d84ae84d25ac84ec84a77b53e427cc7b2eb72ed7d56f2204f885715
MD5 a3db93047e178716d3a42db4e94f50f8
BLAKE2b-256 abaa4d4498c2303185cb149bf0ed80f4b9f400d93a123ca3d9bcf6dbbb07b2c6

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp37-cp37m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 358fc6f71841e30ca793a0c1bcd3d0b9c62e436e215773e77a301acb6106cbda
MD5 a87c4f3817c3cb7510a652298ee23313
BLAKE2b-256 0549efde13eb3eed970ee00048807af4a13e06cf064e129b582e03fa4b166b56

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7e59a6da6e437488059080babc9d96cde7c929cc758ffe4b0171aceaea559ada
MD5 5914bd5d8354c3142fe6276406cc652a
BLAKE2b-256 13631569d92d756b3d140262a4c0af78d081f42c24ad2eec4454de89b9480f58

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: onnx-1.10.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 63aee84aed68c8e14583af48c79d99405844034043dee1efbd1937a78dfa7f6b
MD5 0fe458a53d28099878ba8ad0fcf604ec
BLAKE2b-256 4244daf23013f718c4e7d5fce7ba9dcf0ffd6bd52c33abba8c1afff5f61a684a

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48a747b247bc626e049341b8e8c4aeac20aa2306d6b8dff9c9e53a6b14931f1e
MD5 55ca737004951c3db89b4bd45723fb16
BLAKE2b-256 e27ee00c2471f35ca39df404ff4ab878aacd1dc855beed95657a4d87a9280996

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.10.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 186abf5e9189b4b011da290c6d83d5499adefac8f6a07f5d596a192b4c911098
MD5 1f01fa89f4dcbcc6a28f91b312a0aaba
BLAKE2b-256 a5888fda38a7ae5f73c8f996b994377596205db8dc22a099da523383da9f8f36

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.10.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 86baab35fc1a317369f2a0cd3816c0eeb9036c29f9a27ed5e8f6935e67cbf0a8
MD5 136660f9cadaf0aadf4247f37ec42162
BLAKE2b-256 ad442e58a98f2092b8da9b2b6b47c598fb54bdb65737dc8845b3f7d02b1dcffd

See more details on using hashes here.

File details

Details for the file onnx-1.10.2-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.10.2-cp36-cp36m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.6m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for onnx-1.10.2-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 898915bcba9c1d54abef00f4ea7d60e59fdb2d21d49e7493acac40c121eca4df
MD5 96988f1822dc7d6d81d11f0c31592b0a
BLAKE2b-256 dfb1079de495b50d0d8ebfe3c1b804b40eaca0452c8eb69f6845cac63e572787

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page