Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

NOTICE: ONNX now uses main branch as default branch

Here are the steps from ONNX wiki for migrating to main branch in local repo.

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack for more real-time discussion

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Prerequisites

numpy >= 1.16.6
protobuf >= 3.12.2
typing-extensions >= 3.6.2.1

Official Python packages

ONNX released packages are published in PyPi.

pip install numpy protobuf==3.16.0
pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge numpy protobuf==3.16.0 libprotobuf=3.16.0
conda install -c conda-forge onnx

You can also use the onnx-dev docker image for a Linux-based installation without having to worry about dependency versioning.

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.16.0.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf.

Ubuntu users: the quickest way to install protobuf is to run

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

Then you can build ONNX as:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Otherwise, you may need to install it from source. You can use the following commands to do it:

Debian/Ubuntu:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install

CentOS/RHEL/Fedora:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
  • Mac
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.16.0/protobuf-cpp-3.16.0.tar.gz
tar -xvf protobuf-cpp-3.16.0.tar.gz
cd protobuf-3.16.0
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • Building ONNX on Ubuntu works well, but on CentOS/RHEL and other ManyLinux systems, you might need to open the [CMakeLists file][CMakeLists] and replace all instances of /lib with /lib64.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.11.0.tar.gz (9.9 MB view details)

Uploaded Source

Built Distributions

onnx-1.11.0-cp39-cp39-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.11.0-cp39-cp39-win32.whl (11.2 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

onnx-1.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (12.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

onnx-1.11.0-cp39-cp39-macosx_10_12_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.11.0-cp38-cp38-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.11.0-cp38-cp38-win32.whl (11.2 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

onnx-1.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (12.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

onnx-1.11.0-cp38-cp38-macosx_10_12_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.11.0-cp37-cp37m-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.11.0-cp37-cp37m-win32.whl (11.2 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

onnx-1.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (12.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

onnx-1.11.0-cp37-cp37m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.11.0-cp36-cp36m-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

onnx-1.11.0-cp36-cp36m-win32.whl (11.2 MB view details)

Uploaded CPython 3.6m Windows x86

onnx-1.11.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

onnx-1.11.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

onnx-1.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (12.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

onnx-1.11.0-cp36-cp36m-macosx_10_12_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

File details

Details for the file onnx-1.11.0.tar.gz.

File metadata

  • Download URL: onnx-1.11.0.tar.gz
  • Upload date:
  • Size: 9.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0.tar.gz
Algorithm Hash digest
SHA256 eca224c7c2c8ee4072a0743e4898a84a9bdf8297b5e5910a2632e4c4182ffb2a
MD5 7324d9c8b5948dc5a6e35b25914c6525
BLAKE2b-256 fdb7fccddff4d1873074605ff08acc812202b4a849cf4925b1f6ed5eeba575c4

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3403884c482859f8cf2e0c276da84bd9ac2235d266726f4ddc9625d3fd263218
MD5 9970a836562c746f8639d250155ed5a1
BLAKE2b-256 8b5cadda1175d8ed2bf0567c95c1e2a24948a1b6b77f795629c4c852131d7047

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.11.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7924d9baa13dbbf335737229f6d068f380d153679f357e495da60007b61cf56d
MD5 a4392e048658c631be27a8068ed30e6d
BLAKE2b-256 1f597a2a0a4f7f5a56a95eddcd1c61a66189f1292d04407e972a97b255bec843

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 43b32a2f20c94aa98866deae9e4218faf0495144ad05402e918fa279674b6df9
MD5 cf182c775db07c77683b7c6f2847aa3f
BLAKE2b-256 1390f68cdc5cb73da4241d25e13b0f6ddf36cf9d7b989e042404497897fb8f95

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 67c6d2654c1c203e5c839a47900b51f588fd0de71bbd497fb193d30a0b3ec1e9
MD5 b5a90bdfbfe64b4199ac937273a1a42a
BLAKE2b-256 2493f5b001dc0f5de84ce049a34ff382032cd9478e1080aa6ac48470fa810577

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ae74bf8fa343b64e2b7fe205091b7f3728887c018ae061d161dd86ec95eb66a8
MD5 4b9fb5e99dcb9c3135814b4e0db138b1
BLAKE2b-256 b6f2f00488904eaad5e5ad8bf7ec949a6f25011b09235bf65e61fc0276e0e878

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp39-cp39-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4454906de80a351de6929b0896ad605d106c324c3112c92249240e531f68fbba
MD5 6704235fd29557ba56b53604d8549b79
BLAKE2b-256 758fe190efa1d082c5e8c8041089f22e944615fce151dc478a6af600dd7f7018

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d6581dd2122525549d1d8b431b8bf375298993c77bddb8fd0bf0d92611df76a1
MD5 6bb7d9564b74ed96ab059e7212e087e1
BLAKE2b-256 7319048a3c75d315b5b4b739b57be446393ec94c207320923e9d47f8ee9a1bd6

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.11.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0cf47c205b376b3763beef92a6de4152f3b1552d6f640d93044938500baf5958
MD5 d4afbf8f2e85e62cbc0bc7a928ddc12e
BLAKE2b-256 a53ebddea4d361a5914e2ee91d743bf1018311dcbe401dc68beb19926725a463

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6ddbe89e32f885db736d36fcb132784e368331a18c3b6168ac9f561eb462057
MD5 4b4da0f77e0124fe8dff4cb9d3f3216c
BLAKE2b-256 98114086528e63f529dc223904b7764349d459be354e21cb8eefec0e9e8e5121

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 89420e5b824d7e182846fe2aa09190ddb41162b261465c6ca928174bc2ac10b7
MD5 a155b8e42244aad41f3c1b0a8320c24e
BLAKE2b-256 c9df0dffbbfb36d75386cbe3342fda0ef3333e8a464a2e09e6c562016217236e

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9b9f58ea01c1b20b057f55f628df4fc0403bbc160b7282a56e3bb4df5c7fb96f
MD5 4c7df676c95d0b5b5b258f240dea915a
BLAKE2b-256 1832397323d5dc8a7d1ab356ff375f523c18b9ddb42a191c8adfefb039a9e7c3

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp38-cp38-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c3d3503110f2cab2c818f4a7b2bc8abc3bc79649daa39e70d5fb504b208ddb1e
MD5 067b9b1f2ef568e265e2a3651e5d1607
BLAKE2b-256 32f04d13b4d2faca4f420290dfa70ff2eb44bb06aa88f82a37c204b6f3c1c5ad

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ea06dbf57a287657b6dc4e189918e4cb451450308589d482117216194d6f83d6
MD5 36861f625c8e8d54d03307545ab1d549
BLAKE2b-256 1d7ce5de317d95745c3720c4639c21081db6d9c12cc67679a29f5bf63bed9ad6

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.11.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 997d91ffd7b7ae7aee09c6d652a896d906be430d425865c759b51a8de5df9fe0
MD5 1cac38f30386b2f0fcfa04607801562f
BLAKE2b-256 8a2c11e9737bc80e6cb1328d4c96dba0b4b66099d6e404c97951db09787e3d26

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb46f31f12bb0bfdcfb68497d10b20447cf8fa6c4f693120c013e052645357b8
MD5 2939eb2743075897d615cb15ae3dab8b
BLAKE2b-256 22fa8d62013b5efd3df04dfbec1bc426621f4b99c5f259b870801108e9dde825

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a2f5d6998fe79aed80fad9d4522140d02c4d29513047e335d5c5355c1ebda5e
MD5 d5fe1ba3591cd4ea1ddb67bd55277d44
BLAKE2b-256 1377651fa3659dde00d4ce2f84e702eb25116a6148785ca6d3d2d076319afa76

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 58d4873ec587ac14c44227d8027787edc88cd61596e646e3417f2a826a920898
MD5 ddba47e565acf7e433250325a812683b
BLAKE2b-256 f43ded65ce5726e22c6fbd505be42e3f886a418b741731a54073fa81e523455a

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp37-cp37m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4aa899f74acd4c5543f0efed8bfe98a3b701df75c5ffa179212e3088c51971bb
MD5 b97eeb0d259287c73676724833e8ff6c
BLAKE2b-256 626e36042ccd2d8fbaccbaf0178d7c30bfcc833ac530a7f089a7f9b298347321

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 82221a07707b1ccf71fb18c6abb77f2566517a55d5185809775b5ff008bfb35c
MD5 905a533436cf365abf6958cceacc782c
BLAKE2b-256 0595ecc2a02cea59aefa87ed5061fd1aca2b45d0499ddd18f2dbaa70cf8c8892

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: onnx-1.11.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 df85666ab2b88fd9cf9b2504bcb551da39422eab65a143926a8db58f81b09164
MD5 f4a6be6f18fba69b8d15a7394bfbc1cc
BLAKE2b-256 29cf4f70d584f974f9d8aca72dfdd80dc3779508bbe9995e7deae57391a7fc57

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 593ca9e11f15afa26b3aaf2d170bb803d4bd86dbd560aa7be4e5f535d03f83d5
MD5 2eebc7d6c8319b59bc1b880eeba63a69
BLAKE2b-256 25a1ad8ed979a5748bf5f9f9eb3a150e3e0379d96e917b7ba0dd3387003f1c02

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.11.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f335d982b8ed201cf767459b993630acfd20c32b100529f70af9f28a26e72167
MD5 28e88bcf5d8db03b7a32ae3268ed07b2
BLAKE2b-256 81b279f137a684d408a2ffed285b5bfa23ca03717035ae652eac68815b49b914

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b2de0b117ad77689d308824a0c9eb89539ec28a799b4e2e05b3bb977b0da0b45
MD5 df982310e19923de37077f156aaa9d6d
BLAKE2b-256 2c55610f9d51e23004ad6786fe9d988d8186c0703c44a4a1e7710f223605cca7

See more details on using hashes here.

File details

Details for the file onnx-1.11.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.11.0-cp36-cp36m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.6m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.11.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a6e9135f1d02539ca7573f699fb0d31d3c43d10fac1d2d2239a9a1c553506c29
MD5 9e2ef9db0110e37e57d29612df482e3c
BLAKE2b-256 20a8fe6a6a54ccffed31364851e5fd7d17e459aa70024b6f4b87c9092d13eca7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page