Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Prerequisites

numpy >= 1.16.6
protobuf >= 3.12.2
typing-extensions >= 3.6.2.1

Official Python packages

ONNX released packages are published in PyPi.

pip install numpy protobuf==3.16.0
pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge numpy protobuf==3.16.0 libprotobuf=3.16.0
conda install -c conda-forge onnx

You can also use the onnx-dev docker image for a Linux-based installation without having to worry about dependency versioning.

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.16.0.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf.

Ubuntu users: the quickest way to install protobuf is to run

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

Then you can build ONNX as:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Otherwise, you may need to install it from source. You can use the following commands to do it:

Debian/Ubuntu:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install

CentOS/RHEL/Fedora:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.16.0
git submodule update --init --recursive
mkdir build_source && cd build_source
cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
  • Mac
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.16.0/protobuf-cpp-3.16.0.tar.gz
tar -xvf protobuf-cpp-3.16.0.tar.gz
cd protobuf-3.16.0
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • Building ONNX on Ubuntu works well, but on CentOS/RHEL and other ManyLinux systems, you might need to open the [CMakeLists file][CMakeLists] and replace all instances of /lib with /lib64.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.12.0.tar.gz (10.1 MB view details)

Uploaded Source

Built Distributions

onnx-1.12.0-cp310-cp310-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.12.0-cp310-cp310-win32.whl (11.4 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.12.0-cp310-cp310-macosx_10_12_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

onnx-1.12.0-cp39-cp39-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.12.0-cp39-cp39-win32.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.12.0-cp39-cp39-macosx_10_12_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.12.0-cp38-cp38-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.12.0-cp38-cp38-win32.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.12.0-cp38-cp38-macosx_10_12_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.12.0-cp37-cp37m-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.12.0-cp37-cp37m-win32.whl (11.4 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

onnx-1.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.12.0-cp37-cp37m-macosx_10_12_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

File details

Details for the file onnx-1.12.0.tar.gz.

File metadata

  • Download URL: onnx-1.12.0.tar.gz
  • Upload date:
  • Size: 10.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0.tar.gz
Algorithm Hash digest
SHA256 13b3e77d27523b9dbf4f30dfc9c959455859d5e34e921c44f712d69b8369eff9
MD5 0bcbf950ad4426839582297f14cc0914
BLAKE2b-256 2c6a39b0580858589a67c3322aabc2634f158391ffbf98fa410127533e7f1495

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 81a3555fd67be2518bf86096299b48fb9154652596219890abfe90bd43a9ec13
MD5 4e31ef0e25766e5ca4d7f4cfe8c81b2c
BLAKE2b-256 b0f05e383f64293857e86c300cb70010cce1ca6f038f1563b85501d30404ad2a

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.12.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 23781594bb8b7ee985de1005b3c601648d5b0568a81e01365c48f91d1f5648e4
MD5 ccfa6f1da0bfbecec436d34c35096b45
BLAKE2b-256 de4cef1f2cc02dd2aa5a2542fd8bebdeb2ac7751b2ea9944ecb1a7e311a5c8b6

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fd2f4e23078df197bb76a59b9cd8f5a43a6ad2edc035edb3ecfb9042093e05a
MD5 6777d264ef7e77493b1bd35ee642787f
BLAKE2b-256 53b70a595a49bd5bc9af85498cd336f98cd1eaf4783f6eeed03908b12c5d11a4

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 213e73610173f6b2e99f99a4b0636f80b379c417312079d603806e48ada4ca8b
MD5 df243b68bc330e344db7a2d78f53d053
BLAKE2b-256 2ccf48a81c01be51553ef5092de20200e911409974f71beacafbb03d6a80b1e0

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp310-cp310-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 bdbd2578424c70836f4d0f9dda16c21868ddb07cc8192f9e8a176908b43d694b
MD5 3927a7598583a186b3d8c60a75590958
BLAKE2b-256 561557cd390fa0a8cb548dad706231c36a94af5f51868a53eafe784a924d74b3

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 af90427ca04c6b7b8107c2021e1273227a3ef1a7a01f3073039cae7855a59833
MD5 f0abe017f828aac805db9a47e5636712
BLAKE2b-256 5f654f72306146aa19e462f400ea28e8cf393437bcd98caccf1d4d01278aa727

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.12.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f8800f28c746ab06e51ef8449fd1215621f4ddba91be3ffc264658937d38a2af
MD5 06e191053f3e738c38426231d4b0d0e6
BLAKE2b-256 824d1db8ef0137bdfeafeff1e99d34ebf3290b36103441f6f2d2ea58f346ae4a

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7a9b3ea02c30efc1d2662337e280266aca491a8e86be0d8a657f874b7cccd1e
MD5 1e8ad6e49562bf3083468455d3319768
BLAKE2b-256 f84ab7e053cb236d76e129a98c3b2a85a2acbae4776f37be3d41bbca403280bf

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fab13feb4d94342aae6d357d480f2e47d41b9f4e584367542b21ca6defda9e0a
MD5 16bdae7ec1f36b41c69f551332303b3c
BLAKE2b-256 e66b396e2524d00c9469faff22d7590b62df2e464781d372fb46b22c9441db85

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp39-cp39-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c39a7a0352c856f1df30dccf527eb6cb4909052e5eaf6fa2772a637324c526aa
MD5 3c302b645ea53c5d477dbfbefdfc3392
BLAKE2b-256 307a82cf5e724f4bdbe3afbeeb3b187513cc813653dacc4943758b97ab3ac503

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f66d2996e65f490a57b3ae952e4e9189b53cc9fe3f75e601d50d4db2dc1b1cd9
MD5 1aab82eeaf694232ceddf098510d172a
BLAKE2b-256 03abf8850b030d912e1d48ddca9e94df7fa93b151bf5d12c2d056847a367ac4d

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.12.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fea5156a03398fe0e23248042d8651c1eaac5f6637d4dd683b4c1f1320b9f7b4
MD5 32321cd358a87137d66cee73f5b01b65
BLAKE2b-256 21f6241cbdbefc685e4494c6466f0a49560557e0aae0a131dbec4634b5fef25c

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d9a7db54e75529160337232282a4816cc50667dc7dc34be178fd6f6b79d4705
MD5 1e0e2b926d6390f24237e3372d4be5ea
BLAKE2b-256 f9a63a508a5fe98f6faa1a3197da86b65b8319b2c684efca874046d363af0c7d

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3629e8258db15d4e2c9b7f1be91a3186719dd94661c218c6f5fde3cc7de3d4d
MD5 a2d4b910e10cf0f682fac12f91013eda
BLAKE2b-256 e7d041781c564fc46f886c73917e23aab7088040c0dab6a8158c0260b5f5a8bd

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp38-cp38-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 56ceb7e094c43882b723cfaa107d85ad673cfdf91faeb28d7dcadacca4f43a07
MD5 24e941da313a01d207c5fe147a60f4f8
BLAKE2b-256 0f3b340b3584d9792aefff533c0b742206e7447e00355a3a91d5d9c50cdf98b0

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8a7aa61aea339bd28f310f4af4f52ce6c4b876386228760b16308efd58f95059
MD5 7e4fc311122a034b0128cc8997402b13
BLAKE2b-256 e15ce59a175f6b771a59b1e9fc02e76390ceea809a86f492bbf7374af33e0881

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.12.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3c6e6bcffc3f5c1e148df3837dc667fa4c51999788c1b76b0b8fbba607e02da8
MD5 aabce876e7034411e0da786505327861
BLAKE2b-256 4d9e8b645de96c4a4ce93da74394bd325a623d82dd4b01844bdd9807e4ff3d7b

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 341c7016e23273e9ffa9b6e301eee95b8c37d0f04df7cedbdb169d2c39524c96
MD5 44197ad76695da0ad3c9dc350ef4c3fa
BLAKE2b-256 bfc5e8edd9bc58192ef964270e2f4600a02cd5e5d0958b81f7abe2ee0a604478

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c11162ffc487167da140f1112f49c4f82d815824f06e58bc3095407699f05863
MD5 2524d2ca8616f987bfe738c5568023cc
BLAKE2b-256 aed84b0ee37ad2ac350d1d678025a72cf393b0af0c32ab418b4597c9fb2c22ab

See more details on using hashes here.

File details

Details for the file onnx-1.12.0-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.12.0-cp37-cp37m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for onnx-1.12.0-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5578b93dc6c918cec4dee7fb7d9dd3b09d338301ee64ca8b4f28bc217ed42dca
MD5 527da3522529da2232699a2ffa3ddca6
BLAKE2b-256 eee771ab92e5ebfe9e06058227b80d5713b42dc19a85a96373d48a35d1340ad0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page