Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.0.0. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 18.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, "Could not find pythonXX.lib", ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.13.0.tar.gz (10.4 MB view details)

Uploaded Source

Built Distributions

onnx-1.13.0-cp311-cp311-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.13.0-cp311-cp311-win32.whl (12.1 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.13.0-cp311-cp311-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

onnx-1.13.0-cp311-cp311-macosx_10_12_universal2.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.0-cp310-cp310-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.13.0-cp310-cp310-win32.whl (12.1 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.13.0-cp310-cp310-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

onnx-1.13.0-cp310-cp310-macosx_10_12_universal2.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.0-cp39-cp39-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.13.0-cp39-cp39-win32.whl (12.1 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.13.0-cp39-cp39-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.13.0-cp39-cp39-macosx_10_12_universal2.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.0-cp38-cp38-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.13.0-cp38-cp38-win32.whl (12.1 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.13.0-cp38-cp38-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.13.0-cp38-cp38-macosx_10_12_universal2.whl (14.0 MB view details)

Uploaded CPython 3.8 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.0-cp37-cp37m-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.13.0-cp37-cp37m-win32.whl (12.1 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

onnx-1.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.13.0-cp37-cp37m-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.13.0-cp37-cp37m-macosx_10_12_universal2.whl (14.0 MB view details)

Uploaded CPython 3.7m macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.13.0.tar.gz.

File metadata

  • Download URL: onnx-1.13.0.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0.tar.gz
Algorithm Hash digest
SHA256 410b39950367857f97b65093681fe2495a2e23d63777a8aceaf96c56a16d166e
MD5 998daf26afaab7e23f7421d7eda0656e
BLAKE2b-256 6cf6215ba9e8d2587755df363170e3be54892b087bad0a99935fe456f7555255

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 88199c7eecba6c4f0b822147cf40184e7de94bcf915b3cbd0e2728966f7305c1
MD5 6de6d098d4031eb2cf9c37f88db076a7
BLAKE2b-256 72c687d48374e307e16fa6c4ee7c4acde6f3fb83a2ed2d02a8ee1310f85f6e03

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.13.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1d443d3b895dda42355ea6281eff638cc53a1a0b12244421d9fc09046444ba94
MD5 e8a98a1bf3216d23e7235e74e53e7fec
BLAKE2b-256 6a1006eca67a30c2d7d8fbfdce37b8fb412773bb6b310bcea6f4591e432a6a84

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8faef7ee6e2012ad1ff13ffe248809218ac4ea7040bd62a7e0740978feffe926
MD5 2e69e3aa043001a883c801663f23b3ba
BLAKE2b-256 c8e3fba30e34e48753bba6637335b0f35219caa792b65ad7e71a9ca401eff990

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bad429298470efa5da5589f518036a125ca8864a766ad706278531c05c723f48
MD5 55bed66b66470f06aee1c326a731cf76
BLAKE2b-256 7809c42eb2b8c5c95c6ae75348136a0b00a402a82bc2d723046378d161148937

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8008d9dd4479445584a5e08cce5b8319777a145fdf397c1791a59efa347bb732
MD5 8fdb779e56feb1e34f548b7ac3233498
BLAKE2b-256 5f70359e0a2927e9be3673f53cd6da41ef2e56ccb78cb2e1402d74a82f1eca04

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 c1eeec79e3cc35b808df4616f9ddef769fb4e5912e0eaacbddfa3a60d93d36c0
MD5 6624483ab3f2f74bbe3c9cfafe80134d
BLAKE2b-256 421c0afbb736379936a773b90f6e17561a7549b86d07060f372ddbbee3f5b658

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b2691ad78ddcac2244b4299e5f5132895e12f99dbd1cfb310d10cdb50cd2d90
MD5 f1d1c09d22b22e8760d4571ab0762c33
BLAKE2b-256 97e1bdb42dde046507250083862520428901af3f5182faac50d3df5f13a4ff3d

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.13.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 41953d6a9c1fc1c1023438c8aac8ed2ee29a1739fbfce68f8ece38f34d326d02
MD5 38b4d7547f7b2d045baa4bc6cb38e69d
BLAKE2b-256 04c760f827a51e3540de248eaa2050dceed75cfd053f49565070255751b61a9c

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1f4f217942f97aad8bd3b707259338045ed5804b3a0dfa453d9f108f53a9ce2
MD5 fdfe763b7631ab0018ab31027a34ba25
BLAKE2b-256 16a73623af9e3d635d2c7cf639570c9ceba21e73776368f331886325cd1a09bc

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c77074bb9c12bef5c0054c972bba0280de6df0712dfccfdd224b0ee3f0b56cab
MD5 a841daa2f488e5f77fbda2dd57e42850
BLAKE2b-256 4e3ce167f94c3ad1fe3d037027956f0ba49785599cc82ecdb28d41ab1dfc0103

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ea9ce14eb7bc4ff3e236d44433ed6b9a5cdb2921d357d28f74268b43d04897c0
MD5 196d4db01e9d780499262e1fdccac569
BLAKE2b-256 88060aa7b8420b061ac212a1a21876cc932a26f6d53ee78aae506d622017c327

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 4d25aaf5b385937eb3d0846616ff8fdff65b4f5d2f55c82ffe0c6deb021f4714
MD5 c272dde6711996b450cb191f1c0eb271
BLAKE2b-256 1fa56009b6803ca3ad2b4e8f6aec7bbb1cd58c35a3a42482c77f2cf189d545c6

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 925e9ecc4cca0da65126e5320577b81c0c2ac3c9e0418e77ff21da63d0f3bcdb
MD5 4ed12b47e23cc4c69fee7ea8ec382c83
BLAKE2b-256 01ee910c7c466982c84f2b95a1215a8da773c55bd480ce225b31e49932ec55d5

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.13.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 eb32853d94a61728ba4dd0809740e782896d10178d5593f472d24f51c13c2e5d
MD5 3a381f8fc4072bf19a33769e76855b4b
BLAKE2b-256 2db4539884319b39124064d368dccc33d7fc6e9afdfe7c303cb0a5d12a40783c

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 257db1d357671d81f789f30d4e9358fd6427ae3ebf5fd90e4b0b418e6c8bb295
MD5 b499bdb0637be37266609d37012a82a6
BLAKE2b-256 fa03d624ee112f933325217a7693aaf00ff33d31adc2b0f9adcd213dd06f6275

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5d5e7efbf7d6b81edf358bbfb008d1110ab020de0d52d8c84ffddbf07cedfb2
MD5 f994581c20785768c978d65f546410cf
BLAKE2b-256 b4417b3ca42546d21dfcb05c537b02b86a300c04df0599aa7cf95962dcee3028

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e27021a056dfecfdc6307d8b50e69a4e32e2137b54bfe215c82580e8dceb7d84
MD5 ca37158ae8cd14c51af4f92d7e555c4c
BLAKE2b-256 c8df8a790af2c5a09f288d14585c5a40f0981a5b5e52cf21e50a4454c0430a55

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 43e1ff72dcff4eabf3a75b119156c96603c7c3cbcf93ac7dba0c12687511aa9d
MD5 347fee4cf575e85508b1ab617d717863
BLAKE2b-256 cda1c147fa8fc5a6b62a70888fde71d4e16ee10eabb1241626aaae763a6b5ff6

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 934a6497b2feb7a5ec31063afea5da1b06131fb2e9979f9bdeeec5c8cf0e03d2
MD5 67f396adf2f1cd288a1515cdb6d778eb
BLAKE2b-256 2c4ad46f2e9fab103e59f575590e051bfbf04c2ca52c1bc60b86bad004e2dd9b

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.13.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cef04e12123fef9f1e44078311fe7e9d9da0713e273ea13147b77d57cfd5eea0
MD5 53d72ce1a17b5e276aad26802e40b087
BLAKE2b-256 8d2c80ee053285c3f162987816f9123e427edb8ce107bf34955cbc3256c9daf3

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ad8208252f6d61dcd487c2c62f6fbc1eee24bf11addb56c500cf0feb8966f36
MD5 588f00421506a3d17ec721f40c35d767
BLAKE2b-256 71778ee74cd1a4f5f776794a9cff11d7fa8375189e60cd81937744f81bd92e72

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd305274b199ad04ea6c185437f736981265f20d7ac2cbf16411d2d35e5e8e68
MD5 e95a88c1b2b8fab5863c2d0ab7973011
BLAKE2b-256 535ece0661a444086dec4917f3818fd8d6d082cc747ec4cf26747d9c793926b6

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2e8ece71cb00c1e8f5fec93f306a071b8d2929fded6b1e6a71cab710de2e798d
MD5 d6472a99d33db1146e741719d683486f
BLAKE2b-256 eb8d14714d94e18da3d49ef19dfdbde15b5cf3f4a8559e9bf9800f9cad72f431

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 4bac7453fa5fa969352778f759896c43e3b8337ae532cd6dda36758b9dc656d7
MD5 1ca6e4889ad40167842beb292e9cbe05
BLAKE2b-256 dbd4ed863a140d64796f6f572db5304d3c514c7f8d8c948d49084dc082edd4df

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 098176b93b19323639831561618da91aa472745cd518527a540152d7f9b8f7d3
MD5 6b4c11e5cdc09b5f340f6b58da3359f9
BLAKE2b-256 2543f3b95dad236520b6cee66807422677a093d97218d6e690a57b00f033291b

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.13.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.13.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2b8429926423e83aba724ba8586ef1611d7bf7f4f9f2cc4312856da86fd9c5ba
MD5 8b87fd75a5aea7f0570702014074155b
BLAKE2b-256 cc9c01831e04d16f3ab3dc2c642a4da499f62f93a7632e68782fad017cb80055

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 603587b438bbf685860ead13a83b771cd7a6a0565f745d825260c1ad6904674a
MD5 31fd7134bc4a2b74483898a810859732
BLAKE2b-256 20557830ee30400ff72e0cdcd2e2fc5e6e18903c29d828ce4bb30abbb1c9bc25

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b9ff692dff87dc180045c055502ab0d91d042f1cd3058d94de4141cd4445286
MD5 99486b7d50c1de1ac00c16b2f9eaefc9
BLAKE2b-256 a930efe90d51f659fed3d45aaba94293533eafd2ec64a504621611f96a3016de

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6113b4491cf27c408272397405c2f0daf8751515a91ea86f03db05f953433be9
MD5 ee528fc70f8240476b991e940c3f3932
BLAKE2b-256 da4659d78537fbba312a077da50b4155194b811b26c050836afc93e5e84c08d9

See more details on using hashes here.

File details

Details for the file onnx-1.13.0-cp37-cp37m-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.0-cp37-cp37m-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 99fb9e674e1244fed09afd2a3106485d803357beaea7c0ae2f5956bde8319c54
MD5 02d34397d4a7aec06da050c74be7e1c7
BLAKE2b-256 e7e4659312d5b2ed1aa2be770e1e702d0019726126edfe4f7ba878e089c357c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page