Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx

Weekly packages are published in test pypi to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.0.0. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 18.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, "Could not find pythonXX.lib", ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.13.1.tar.gz (10.4 MB view details)

Uploaded Source

Built Distributions

onnx-1.13.1-cp311-cp311-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.13.1-cp311-cp311-win32.whl (12.1 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.13.1-cp311-cp311-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

onnx-1.13.1-cp311-cp311-macosx_10_12_universal2.whl (14.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.1-cp310-cp310-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.13.1-cp310-cp310-win32.whl (12.1 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.13.1-cp310-cp310-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

onnx-1.13.1-cp310-cp310-macosx_10_12_universal2.whl (14.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.1-cp39-cp39-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.13.1-cp39-cp39-win32.whl (12.1 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.13.1-cp39-cp39-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.13.1-cp39-cp39-macosx_10_12_universal2.whl (14.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.1-cp38-cp38-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.13.1-cp38-cp38-win32.whl (12.1 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.13.1-cp38-cp38-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.13.1-cp38-cp38-macosx_10_12_universal2.whl (14.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.13.1-cp37-cp37m-win_amd64.whl (12.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.13.1-cp37-cp37m-win32.whl (12.1 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

onnx-1.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.13.1-cp37-cp37m-macosx_10_12_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.13.1-cp37-cp37m-macosx_10_12_universal2.whl (14.1 MB view details)

Uploaded CPython 3.7m macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.13.1.tar.gz.

File metadata

  • Download URL: onnx-1.13.1.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1.tar.gz
Algorithm Hash digest
SHA256 0bdcc25c2c1ce4a8750e4ffbd93ae945442e7fac6e51176f38e366b74a97dfd9
MD5 545b06eed91fac085ef7d4780f89e9b3
BLAKE2b-256 56b5f5889d518276061f999d7cda5714f288b1718cbbc3f538e943822626eead

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9af2b1cf28c6fc9ded4292fa844a5687619be231375db9b8e4029c2c66a06299
MD5 2baf22a8cd95038719673023d10e7c38
BLAKE2b-256 948e51df1e36a5c33393cc3f43a1d87888fcf0954a47ae43dc2628cfbe7f4af1

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.13.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6173c798344ee9c9b6d8f55174627c9e6e95e1e527cdf254b76f2e294e84a2b1
MD5 20defbbbfe4e7c44961efcb14ef3c96f
BLAKE2b-256 76c59029c2a3754b9862bf5c0d0ba64aed707c62d694d82842679ac6cbdc68cc

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb7951ed7c13383223bc57c4aacd2c07f3b35c8e6b3959c0e56b19f4bf22d193
MD5 9eff022259a11c1022335070c18a3379
BLAKE2b-256 c1857f9672e3f58516dea28a851278bcc71dd13904df041baec76178ce235f62

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ade8260e6d42c6258502f534bc5564820442a3775a0e8614f28cdaf1ac07d0f7
MD5 e51e525006c992bae0afe505b5215d2f
BLAKE2b-256 19108424cb68cc8a7cf3821cc840bfbd2df099286aead728f751a460726b54c9

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 efa32f2fbdf68324579ab7c50ed08d178b38a2300a31e38856bab8108596200b
MD5 2668af86230f88b749fd73ad6f58dec5
BLAKE2b-256 707267f1a4e0212811e10967c5a1d1438c410f9dc0547ceff17e5b3988988d14

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 b939dd1a32b728cd5c461b2fedfa53e0d0d2b400d5b714858205adb6f9dea722
MD5 7ce1c9bd0486537853fd5a2f78bbe5c6
BLAKE2b-256 88570d698e4152cc2be51ae328b5dfe4b6e11c3a880a13419ee52abaa04e528e

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4a91fa57abd05da2a3bb20b3695af62ccde83de0b8b2bac86495383a72fc23c9
MD5 1b6186f356949007144b61f6e2a4f503
BLAKE2b-256 bbcde2e63b1f0922dd45f6941a3422ccdb400360955064654a1a3a20e6a613fb

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.13.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1a62e0e7ba0546e2165c7e269e09be9a76281ed9273568bce08ebc4f86a6e168
MD5 f4241cc1a811a7bc9cdc1f24a3eb1d98
BLAKE2b-256 019501dea95f2909a333411caf35d95d1521e01ef947a459e0da40403c143693

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1810655a12a470ac2fa978b43fa71e5d8e8d5648ba3b71086da2e51272947fd8
MD5 6d20a35d954cf25b456d74b04afdddb4
BLAKE2b-256 b1ddf2b9ee2a902c9d8ac01d018d999d1906f60b6facc8cd69426ad75090199a

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b1d06ab65b3a5ae030e55916aebc26cd02d058cf74b0224676f34bdd2f06501a
MD5 05273335a8a644cfa66e7946570a6e40
BLAKE2b-256 e3e0911b9061944b7e2e66c8f06ea47c07db39f088e811b2bebd6c0225e7b93b

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 48f28bd276c0f4083f7664ae237f37678db627851963f2e0090635f6be5a4b6f
MD5 ad4a4376130ed717f93256bc7a9b57c0
BLAKE2b-256 a70e3fa9585054ad604e459a50383ffa90e3cb0b5d956760b793fd03901086f5

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 b309adf38ac4ba0402b007c62660a899aae98c9a207afe8c4f4e1fee8c385af8
MD5 e320884b69f691a35fe1400d2819c9e1
BLAKE2b-256 5d18d528748b15a57ab6d526710c84ffdd56d283e290616ce0f6ba93e911b2c6

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cd88a6b51d07ac8b3b88f2398256b4389ca4b84fe45acd1f8a0cb10425ae801d
MD5 7ff0a455dd22cd695bce24049e755499
BLAKE2b-256 ff80a95f990446af6428f754f7af93c1db6962acc8e0ed8f6f31d414badc140b

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.13.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d07b578589ffdf9d2e0ca6fb7dad5ffa8f2d2d1e4f210aa464fb229c5cf868e1
MD5 9f6f69791127218b80531baf4f5e830a
BLAKE2b-256 e2b23a427414083903aa9c66ce502cc6211b30d28e27042c22e63c17a869b240

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c55918281d561edc5a2434b3aa50e827864896ee9e65f3194ea3fda87a1b4281
MD5 dcbe9ca40f11dedf6e3f78b519ae1605
BLAKE2b-256 5bbd512979f78e9ff43aa80daed15018f66337d36c0c359c75d0d76e84f3995e

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc04158a3180c6a713394e0a4cd64abff026be790e06d7522de7d3ec1080611d
MD5 91f7b4138cba3b6210c941dcb7ee878f
BLAKE2b-256 f145a1a19749416cc701fb94d5283cdc33c5aecab09d2911f00195146e29b969

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0325e9c3bf6fcb1369871a1357de1c1f37ad18efdb5a01c8bc9a4b4f1037fa28
MD5 e0de4dd9f53cafa7587e82854a824b0d
BLAKE2b-256 7bc81f0eeb318a85542c920062259eea032023fb75883736f551dc52f034db7d

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 e3ee28611421fc04b5a4804fc0e802d215193308458593497f5d26c164ee52fc
MD5 b3677f2cde20dec3c7d2c0da9ebdde39
BLAKE2b-256 b1e196f3d1ef4ff49f9c20d386b127b674f826156d4ec1aa96dce8e28b717ad6

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e68ca8e43fa790c1bd772f706282788bd1187ca7d1aadf69af4bab2f4566edc0
MD5 831ea22136283f65e5011da9cacc7059
BLAKE2b-256 d6c8bff3f0ce912b49fe97c98cd35a2df8bfc62fa134aa08b3d49cb5badf2c39

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.13.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d03e09cb1fa9dbdaf3269cae9c8c186d422ec061ed40f393092b0dc67dd1b43c
MD5 76c4dc27801e5630a5fcf331bc2a4f0b
BLAKE2b-256 e10cba6da0a035d147a3920f074315b1a902a23bb346601be8d424db41a5695d

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e980706de4dc94ffafc57e4ae7e7f4117dbd4c377882637c28a261a6aed38246
MD5 46671e3d12f12a49652743ab9b535201
BLAKE2b-256 1551a3cf9d237c81d26abc1c78e8355b1a777fbafcb0c35c07f086a8f4721c67

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15b7a41b21b61c09cf4535a69364ca69e3593f47d09d85752c0f6d07c6b337b4
MD5 4bc733c193d76a1a30f8a323b2796637
BLAKE2b-256 bb4e999bc85d7e744806019cf25ca3829a68edf3afad8c730ec857316540d620

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 64fb0d5573419f26f3c1b3f6b63850569a8684d360b482c164b75701bfeaae1e
MD5 51c132e7ae258757f31d10909ae032e9
BLAKE2b-256 4753b5f9c5756b5a767bca5af69527c8883e57e5cc2b21e9433985a3bea42995

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 5e2fe69e51157e7aa00e959059981ce74b5c5bd6edd4512079fc4c10fb95d28a
MD5 90db26e4b47bfffbbc2171adf9b44791
BLAKE2b-256 c71df779f3bbbc78331eb56e75b6ad42f8d0b4935f24b44e6be2ec61462b18ee

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fd3bd0e12beee800ac736002ef9b488d69b2ef392444f1d8ae9dfec60629f190
MD5 47df12a40efb39f42c5cfae9228f1361
BLAKE2b-256 d99aeb008df4ac35ed3cdf9b0df311c49cc788e18ce6ae3340ded5b0a0424c3b

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.13.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for onnx-1.13.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 01e853e3dc90da05f1b985e8ea2db5910128dd0555dc79fef26ef72948be2a32
MD5 0a98ad5bcee43fdd1712c9036658ff2e
BLAKE2b-256 dd7ecb0f7a132b6dd2c921c519afbf15e37c637b7b99adb7517916478ee40c8e

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9700d8b368eb385648804ccbd4e06e125560e77293150643040360be9748dbdd
MD5 ec1da6a1f2bfde3b880139fbda2274f7
BLAKE2b-256 627976eb10b85257a36c632aa92dd37685fdb9142a736ceb02a1edfe7c846122

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94ecceedc1625d087a7e398dc30ec6b3f2eb649e7b445b0bfc9632d6013b3acf
MD5 55dfa1ad0c560a0842034e9d5c7f01c5
BLAKE2b-256 85ea4ff8468d7e0919e23517a457745a8b6324906d9e29028f09c0ba4e91b54b

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 826858018694244e9c41cf50f58761f59b947e289e8c1a0e441043e290d101b7
MD5 f8c1fc14f5c40612bc9c308522f8ec39
BLAKE2b-256 eb38095d4357c56d10c76ac293b499f9abec6deea4f24ffa34d03d4c01711342

See more details on using hashes here.

File details

Details for the file onnx-1.13.1-cp37-cp37m-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.13.1-cp37-cp37m-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 39bc23dcea2384423b0ad31267207484bf98ac246e5bf08bd3eb2f67cabf092e
MD5 46449d7dd6e289dedf3b69c733086608
BLAKE2b-256 432f8ee75021f7765b38064f385d85f989d59035bf05914ea44e28af6c8adc21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page