Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices OpenSSF Scorecard REUSE compliant

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.14.0.tar.gz (11.3 MB view details)

Uploaded Source

Built Distributions

onnx-1.14.0-cp311-cp311-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.14.0-cp311-cp311-win32.whl (13.2 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.14.0-cp311-cp311-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

onnx-1.14.0-cp311-cp311-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.0-cp310-cp310-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.14.0-cp310-cp310-win32.whl (13.2 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.14.0-cp310-cp310-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

onnx-1.14.0-cp310-cp310-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.10 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.0-cp39-cp39-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.14.0-cp39-cp39-win32.whl (13.2 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.14.0-cp39-cp39-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.14.0-cp39-cp39-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.0-cp38-cp38-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.14.0-cp38-cp38-win32.whl (13.2 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.14.0-cp38-cp38-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.14.0-cp38-cp38-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.8 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.0-cp37-cp37m-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.14.0-cp37-cp37m-win32.whl (13.2 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

onnx-1.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.14.0-cp37-cp37m-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.14.0-cp37-cp37m-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.7m macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.14.0.tar.gz.

File metadata

  • Download URL: onnx-1.14.0.tar.gz
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0.tar.gz
Algorithm Hash digest
SHA256 43b85087c6b919de66872a043c7f4899fe6f840e11ffca7e662b2ce9e4cc2927
MD5 52038fd69b4be9915d89cdc5cb2d1239
BLAKE2b-256 d2f48bdd479ace89b7957231157cfdfec4be629e5bbbbebe21535d6c40df6d02

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1fe8ba794d261d722018bd1385f02f966aace0fcb5448881ab5dd55ab0ebb81b
MD5 af959b94e7a09dd2feed05c4ad5e2ae6
BLAKE2b-256 a695ce80f1180b27d6ef0cf65ea82abfea09d0c320f7cbecc36e0a78f20d7888

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.14.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6e966f5ef38a0521595cad6a1d14d9ae205c593d2824d8c1fa044fa5ba15370d
MD5 aa4062ce687b51878df7542f3cdd3c7e
BLAKE2b-256 defbeb9d980aba925367de737c63950d4b8e9c5b06ea0080ce422c751218bbef

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fab7e6e1c2d9d6479edad8e9088cdfd87ea293cb08f31565adabfb33c6e5789
MD5 c63a1b92047eae718407fac36b651826
BLAKE2b-256 6c4a7864298bb0733e5cfc15766ce341d132fa6a79dd023e76c9e7d5788af4d7

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba92fed1aa27cba385bc3890fbbe6484603e837e67c957b22899f93c70990cc4
MD5 34d72fa8bf1816d8a967ca79e33d08e0
BLAKE2b-256 1ea78111af111d70ee49d79533f0c3b9e62722bbb64d5f18538a1776f2ffb2d7

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9d28d64cbac3ebdc0c9761a300340c60ec60316099906e354e5059e90335fb3b
MD5 4493accc06005a62701cb47313953d92
BLAKE2b-256 83c90899e23b6c5d6316220b6e2a6c5c57dc36c57ff96b8e14b0f6620512f633

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 5e780fd1ed25493596a141e93303d0b2897acb9ebfdee7047a916d8f8e525ab3
MD5 69d0a1e2a53a873e5eea8af1a5fb6907
BLAKE2b-256 28ac1e9768c000212841bcef7dde2ad4a64bf54abe4710042682af06d708dd65

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d8c3a2354d9d997c7a4a5e467b5373c98dc549d4a33c77d5723e1eda7e87559c
MD5 4522818659912de2135f4676305584ff
BLAKE2b-256 225c46298252ea9f92b6b94184e8f001e575f2c346a22011498110fd032fc921

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.14.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0753b0f118be71ff109dd994a3d6769e5871e9feaddfada77931c63f9de534b3
MD5 6fc8ceddfaca588d69236b2f88a02e2e
BLAKE2b-256 30add829ac8510c61eb9e678c9dd59d788ebe04152cf42bf500328b9a90c01b3

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01893a4a2d70b68e8ee20269ccde4069a6fd243dc9e296643e2afeb0050527bc
MD5 521ed66f64d13379c690fdfec3763a10
BLAKE2b-256 d6d51ed17d27f9ac0f1064706eb19cfbb7052d8397f259dc337961838b00b868

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00b0d2620c10dcb9ec33441e807dc5851d2843d445e0faab5e22c8ad6874a67a
MD5 69543722d1a72964e94f7f755b89a2b1
BLAKE2b-256 2326143c11d1d394a2653b1c53b50d991ff59ee16aa7419cd079aca25d37b776

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cd683d4aa6d55365582055a6c1e10a55d6c08a59e9216cbb67e37ad3a5b2b980
MD5 71e9b8b78458d61863a5bcbc3bfa3531
BLAKE2b-256 431b585960e881a0eaa612659c1dafd2b9d4d38b40416db51e638ca6f6b0a8c8

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 fb35c2c347486416f87f41557242c05d7ee804d3676c6c8c98eef6f5b1889e7b
MD5 0ae9fb51e2fb8e2b6edbab17bd90b9d8
BLAKE2b-256 b5636926e87da3f333e0880f77efb32cef8ef1fd6756b7a4811e7062f1bf7b65

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0639427ac61e5a0181f4f7c89f9fc82b3c9715c95071f9c3de79bbe303a4ae65
MD5 7066638e33803e55d5e58f59554a1a87
BLAKE2b-256 dc62c0804648cc409cd0b7d1902065a9fe2b024bc01b06969b4bbcaec0b6a307

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.14.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 dcfaeb2d15e93c456003fac13ffa35144ba9d2666a83e2cef650dd5c90a2b768
MD5 8dbc069f7b1ce5382ed5d65d1373706d
BLAKE2b-256 08bbe186d28bde68aa822548f728af19706e4da253065af681ce2a58fdba27e7

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54614942574415ef3f0bce0800c6f41ecea8201f8042754e204ee8c0a8e473e1
MD5 0b8473c6b8677a869d92f3c13d9e454d
BLAKE2b-256 b7512959fa869df05a311f34fda01e7e876593a1a5daffe3ab01b2d60b6e0821

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a593b46015326feb949781d030cb1d0d5d388cca52bff2e2995badf55d56b38d
MD5 d2225c771540d4b03826bdd453393a4e
BLAKE2b-256 8b93724c9ca7f4d1a93ce5158d68a94d736f7f9ad48b5d5659749277484652c6

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 45d3effe59e20d0a9fdc51f5bb8f38299086c79576b894ed945e6a058c4b210a
MD5 da1eab1e862cd6a7bab4b123fc240963
BLAKE2b-256 92e5cebaf9502994cac3ed68c990026a73a8e5f30d29f2e859b43ccc3ed9f708

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 7800b6ec74b1fe3fbb3bf4a2380e2f4007c1a7f2d6927599ad40eead6eae5e19
MD5 77bff8374cf5b0c60f14e079bfb205fb
BLAKE2b-256 20393f5d154658034abe972e3148ab8fa5734419b39dfb3a9f4be76f2c0686c2

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e1607f97007515df303c1f40b77363545af99a1f32d2f73240c8aa526cdbd109
MD5 509ec3f843e0c560aab60946b11b22c7
BLAKE2b-256 e3f2c78651626f63fe019a44baf2519eb4db257ccdd6c71db00b8143919e7e08

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.14.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 296e689aa54a9ae4e560b2bb149a64e96775699a0624af5f631665b9cda90482
MD5 b085c8cf2fdb0b0830c81708c882916f
BLAKE2b-256 f97ac53bf15b900b15948a2504316614a3d0f9f782b489c4fd26e85077c675b1

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed099fbdada4accead109a4479d5f73fb974566cce8d3c6fca94774f9645934c
MD5 7eac3d2e318a36f3316ff5e9becdb145
BLAKE2b-256 c44acb138cbffe65c7c6a4c650e01fbc1c1e1c143797252fc128e4694276c2cc

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fbcdc1a0c1057785bc5f7254aca0cf0b49d19c74696f1ade107638054157315
MD5 d87115bf5728690b2bc6b58ad80406dc
BLAKE2b-256 8d5a71977362318ae140c4d285199f7a31c0312483806b2fcf76bb588edd669d

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 369c3ecace7e8c7df6efbcbc712b262626796ae4a83decd29111afafa025a30c
MD5 ec2a2ed03ee94bf3cef2936f04e5497e
BLAKE2b-256 4a760213e9b8e3253e96b5bdb659ac8a39d86ae3dd41e9ac04dda0394e27112e

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 a9702e7dd120bca421a820020151cbb1003077e17ded29cc8d44ff32a9a57ad8
MD5 e93e85bd04f39840adb7baf33050581b
BLAKE2b-256 13d53a60011e44ab9bf13f4128885e19270162335ec33782e81b55a8158f6c7d

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a8f7454acded506b6359ee0837c8527c64964973d7d25ed6b16b7d4314599502
MD5 9a446f9cb25fedb8bb8f77ff061372e4
BLAKE2b-256 8b08eba8fc272f326e21bcd1bedb4bba417a09963780c36245767faca4173ced

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.14.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 18cd98f7e234e268cb60c47a1f8ea5f6ffba50fe11de924b17498b1571d0cd2c
MD5 e9149abcc5de98cdbbc41b85ef6b80bc
BLAKE2b-256 a9010510b1a166f6bb1ee10701eb5e5bcbf0353254af963e37dbcb203cfeb9a5

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac1545159f2e7fbc5b4a3ae032cd4d9ddeafc62c4f27fe22cbc3ecff49338992
MD5 cf4de8a44968550b6d8b2452bc90dc29
BLAKE2b-256 ad2f3dc6bda9f70dd3d411b69eb62310e370bfbf16a38a32534f9779a3dccf38

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3315c304d23a06ebd07fffe2456ab7f1e0a8dba317393d5c17a671ae2da6645e
MD5 f3a92bfadf11796e71d915d39df9b08c
BLAKE2b-256 18c7d457101bc9fbde788c08c9ad4429589add063521df5f25b25555864b5cfb

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 bbdca51da9fa9ec43eebd8c640bf71c05daa2afbeaa2c6478466470e28e41111
MD5 aed961201ee1d3d4c8fa97ab0e287ccd
BLAKE2b-256 a2dd24a062a0e92967c114c39242634689abe9a78615118650ae851eb7c7539c

See more details on using hashes here.

File details

Details for the file onnx-1.14.0-cp37-cp37m-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.0-cp37-cp37m-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 c16dacf577700ff9cb076c61c880d1a4bc612eed96280396a54ee1e1bd7e2d68
MD5 c9ce87e70da9b9cbef7487727250bad2
BLAKE2b-256 f2b4424ec96b4f4ef9bfd2ccc0e068819c2639737f4f5ee302c2f8b6a7f6b527

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page