Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices OpenSSF Scorecard REUSE compliant

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.14.1.tar.gz (11.3 MB view details)

Uploaded Source

Built Distributions

onnx-1.14.1-cp311-cp311-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.14.1-cp311-cp311-win32.whl (13.2 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.14.1-cp311-cp311-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

onnx-1.14.1-cp311-cp311-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.1-cp310-cp310-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.14.1-cp310-cp310-win32.whl (13.2 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.14.1-cp310-cp310-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

onnx-1.14.1-cp310-cp310-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.10 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.1-cp39-cp39-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.14.1-cp39-cp39-win32.whl (13.2 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.14.1-cp39-cp39-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.14.1-cp39-cp39-macosx_10_12_universal2.whl (15.3 MB view details)

Uploaded CPython 3.9 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.1-cp38-cp38-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.14.1-cp38-cp38-win32.whl (13.2 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.14.1-cp38-cp38-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.14.1-cp38-cp38-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.8 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.14.1-cp37-cp37m-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.14.1-cp37-cp37m-win32.whl (13.2 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

onnx-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

onnx-1.14.1-cp37-cp37m-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.14.1-cp37-cp37m-macosx_10_12_universal2.whl (15.2 MB view details)

Uploaded CPython 3.7m macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.14.1.tar.gz.

File metadata

  • Download URL: onnx-1.14.1.tar.gz
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1.tar.gz
Algorithm Hash digest
SHA256 70903afe163643bd71195c78cedcc3f4fa05a2af651fd950ef3acbb15175b2d1
MD5 2ae765ea11027f44228b4f012b256cd3
BLAKE2b-256 8f711543d8dad6a26df1da8953653ebdbedacea9f1a5bcd023fe10f8c5f66d63

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 16a6667aff34431ab828b393ed8153c0a0cf15152d76f8d93aa48fb206217827
MD5 b8c401805ebb83e379828b01030f0ccf
BLAKE2b-256 03497263b3806ffebd3c967341986df32a5e62b2fa78beca2cdf9516d876b3fc

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.14.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1072baf93e04bbbed45f8f997cbbe96e179080b4cd95bc676882fe64aa709dd6
MD5 d9996e1dcab735401f889ecaba161fdb
BLAKE2b-256 a49961fa0629e0927bfa59e1cb208b345198201a13def5526d051f2c7ee03b41

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b9cd91b85cfbb0d6478f4a1a0aee4d95cf8839adc48c69130a0cf8452f21db4
MD5 c7d1d024acacd07c7d6c3b3fb9af76ce
BLAKE2b-256 fd577d606e47e38ba4c06b5d20b65e8805f74347758191c7a09b77dddc34f3aa

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6efa7375d91b1da10badd1d2701a94b0e9b111a5e1a227be1bf877450cea84ac
MD5 9215a3b73aedd4148b44be1179c9047d
BLAKE2b-256 2761c1621a96bb9e8cb8d1404e67073cc73fe46818783db1106daa928109d214

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 65672ae827ea5f0e59dc0d1cef1c0ed5083d5e8348946f98f1715ebb123573e9
MD5 2071761f618dd480769ab468204b07f2
BLAKE2b-256 ee7f95e6ba6e302d1bbaba49431446ebf08828a6316625850c61d9504ccda6bc

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 93e614edaf87ea1adba24663780ac62e30f421c117d695379daa9ff816de821b
MD5 18a63e349b199671765a6b5627080db4
BLAKE2b-256 199499e19571a9cda6852ac54ddd4a6ff6645e69b09c7faa415894d034dae125

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 776ab461515c20cc4e24dbd75af32b6b1e64de931dc5873b049f13bfec1c96e9
MD5 0b7c26f8326b497def2b062b7af82347
BLAKE2b-256 0036e7a7e7a85564e7d409e4e8addfa11d41015d2190bfff30064771e7c21ca0

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.14.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6c8156be97762814c7c835d597320ef1f6630f034344fbc672cd6edddbbf78ee
MD5 8e969df45294482f8ad2e97460b51842
BLAKE2b-256 b4deacf44330a4b18928fb9bd4b5adde6860c8566df6b13a774e817fe325c5a0

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 921ad325b17484698d9d65978e123b1f351328ea50de6f84f25d09d5c7dde361
MD5 18b03564c084b34c7cf2e1a73fed859b
BLAKE2b-256 47d4f2d212558245e252b936247666c3f5981e6dba62ec470ff8be3df3389364

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea8d7abe048d0e9e31541dc62e9e40b8411b11377d2a22ed842e678802b4e1aa
MD5 3549a0a53fe26040dc09aa17815fa6df
BLAKE2b-256 01760b5ed00c6fa265f1979e05aa9e1cf9549cd82b90e6264647d168ec6e0c07

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f131c2fd36f7848437be9de3b1fa5449a94245e16c6f275f66ac7cf8f183ec26
MD5 69a9b5994f5bef2f9d099000ed18edf7
BLAKE2b-256 2719c34e64c6e0a3f6fd02807af96a732542e753ddc07736012ab83f7cfaa617

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 05d8609b4148f8ee4bd5d8186875ccb288300106242fc5201b8b575681bbd5c4
MD5 51959a3342ba44999d2343e5789fac7e
BLAKE2b-256 b20546fa3a7576d9deaf619700967b73f7c4ddda18e55c071fe77166eba7e1c9

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bdb15fc4b7f2a8a19abb52ac9672db876f9505e7219e206bcb7530e7c1274e55
MD5 6ccae539cbd55313270a8187a4dec603
BLAKE2b-256 9e69cd6f407c91ed397b34f5dbcedcbd6433e3c8ae871b215568b1449b384f86

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.14.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b9c28a99d4a620cb1d31120d35e0fab54073b9725ed50c3cd3ec7beb876e8dba
MD5 487ae44889a75f746bb57a8c7785697d
BLAKE2b-256 3d01fd2faa15bd42f495ee096f4a1a7d8887ee880222e2fd01122a85507912e7

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b113fa0183034743e6477fec928e478a6d94eee8d9a4376c144d20d736cdc45
MD5 4f4b5330e1e00212635d8ff3b9b64fdd
BLAKE2b-256 ff240e522fdcadf0e15fc304145a5b6e5d7246d7f2c507fd9bfe6e1fafb2aa95

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 030aa47e28337fd81f4d884032660e40912a4763ce4e5a4b4144380271390e82
MD5 c75090dcf0367b2fa8960f7c335502cf
BLAKE2b-256 dc0e658563c8aec4bdde08883671a0f0f47c987c30646584375c28191b9b9b56

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 60ad73263a06056f9aa288b082887c6330be08475471c3a009f62439b2a67dca
MD5 357953c5a5007e7a46848c01b9b9e9bb
BLAKE2b-256 74e21507013a6216245b3b32d3eeda8d113d11c8961600f1bb0d4a884e30dedb

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 17f78637d2f6c3c9afad0611fe4c583b6ba4839ac724af0846e5db24dc8dadc0
MD5 b2e5dcc32bdb8031bc23650691a735e5
BLAKE2b-256 f039c2c1d156b284e2c4c4731c37e52e4e2d4a6cefa65fa84dca61ff83008252

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cf20e7a346d22468a128a40c5cc1f4d20c3939e21e74fc8e3be8ba66c6f82444
MD5 9a88d6cddb09dece86b44fd720e62444
BLAKE2b-256 3dd7264991bba735014a39418c116d063eef2ce9d1d24117a1e7caf3389676b5

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.14.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a8c3b1398b156f8bae9882ed8c602e1aa5171180fffcbeb1f9a337fe307c1df4
MD5 9138ce9b6ca0a904aadb77369ef98ad0
BLAKE2b-256 27bdabfa5cdb06e10af6df30eb2424805703f8f43196cc9266663f8f8f4e0b31

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e991e867b799df0d7ed4cdad94c6a3ed9bebaceef3e574ac9eed314e1bfca0ef
MD5 d75e41cc3a8e0f583dd3c1dc7d11ff85
BLAKE2b-256 95ed84689505ed7b73cf70f72bc6d7e978d608623f60b2d4efafdef425b2f347

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 498ecc3e545b80685501c26b62eeeda0b8ae2f2ba8ff3f650ce1f526924aa699
MD5 03b62ae16dc0c90cf0fe572c5d039e18
BLAKE2b-256 13b877f39777e48046672efc747cb652f762828a0b7d3fd226be160e65a01d5b

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 486ced7588437ff08a03914ac110d64caa686ff7fa766123d15c8d8eeec29210
MD5 ac121df44e167194b2ce3f870b93a8c4
BLAKE2b-256 848159d61d2de3487b2cf04d7e2ada2aa27e02065c07881f7734df61bb3e3a97

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 758dc585885e997f1086019f098e7ce0a4b3ab7d5a89bb2093572bb68ea906c1
MD5 743d1b4c753fc22c487689ba826aae67
BLAKE2b-256 f444e0a4c8db7dae68c44a351396a4398d83f068883c5814a325e36bbfc243c5

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.14.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b37e7bd8baf75efa78ecce713273e2aa29c8c06f69cee6107b413cd03bf59b20
MD5 e0bc91e3a1bd170128fab30892accaa7
BLAKE2b-256 956071238bb49fac30ad7ab7958f197f4418e3790a9f6cdd39231d955d554b7c

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.14.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for onnx-1.14.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f5046bfbe7f9bab59fc53984aaa5b47a35c8f8e98787053e1650049a1aaf12de
MD5 9b1624926b42cf8930c591924abcaecd
BLAKE2b-256 7b99b3600f439f29afa7e8207bf812dcdd8e46d70bafb75d6f58bd0b5e968798

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b4a0e029b3604dc5294a7333f622d8c04d6a6a1bc4f51054195074f61b8f41a
MD5 e24a7ddeb9524056d9bd5b74dd9831da
BLAKE2b-256 f718d23e3fdc4226373377614eec2fca6fd13a23fd47651e9a741e131db05540

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84653e8e19f5d051f9e7ed9cf7285527fd34e093e3b50554121849664e97c254
MD5 7fce8027ba1ee4a0afdac1392a0a5fb4
BLAKE2b-256 429c2f445003dffca561d8a1d37f6b61054a1ca70fbb26eeb512a9c3d3869f36

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 58e6eb27c99dbefc84b4234388f5f668b49a1aaeced1580cb96f5fe05800a77c
MD5 6f82313fecb399d841ad98d318df8cb8
BLAKE2b-256 3fd554a8ac1c8546f5faf66e28d263451062121837d8748777ea9e81f2c53fa0

See more details on using hashes here.

File details

Details for the file onnx-1.14.1-cp37-cp37m-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.14.1-cp37-cp37m-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 3fde9e1854e525aae93b403c1174bf68dc86ac92b6f8fb4af0fe3ec0d1440631
MD5 6cfaa3af90aa676e596bda74ec01a563
BLAKE2b-256 5a157d476be125c1588417fa5409cf11e8e3a234b38b6c625dd21b39860d6681

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page