Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices OpenSSF Scorecard REUSE compliant

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++14 or higher versions.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.15.0.tar.gz (12.3 MB view details)

Uploaded Source

Built Distributions

onnx-1.15.0-cp311-cp311-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.15.0-cp311-cp311-win32.whl (14.2 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.15.0-cp311-cp311-macosx_10_12_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

onnx-1.15.0-cp311-cp311-macosx_10_12_universal2.whl (16.3 MB view details)

Uploaded CPython 3.11 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.15.0-cp310-cp310-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.15.0-cp310-cp310-win32.whl (14.2 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.15.0-cp310-cp310-macosx_10_12_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

onnx-1.15.0-cp310-cp310-macosx_10_12_universal2.whl (16.3 MB view details)

Uploaded CPython 3.10 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.15.0-cp39-cp39-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.15.0-cp39-cp39-win32.whl (14.2 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.15.0-cp39-cp39-macosx_10_12_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.15.0-cp39-cp39-macosx_10_12_universal2.whl (16.3 MB view details)

Uploaded CPython 3.9 macOS 10.12+ universal2 (ARM64, x86-64)

onnx-1.15.0-cp38-cp38-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.15.0-cp38-cp38-win32.whl (14.2 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.15.0-cp38-cp38-macosx_10_12_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.15.0-cp38-cp38-macosx_10_12_universal2.whl (16.3 MB view details)

Uploaded CPython 3.8 macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.15.0.tar.gz.

File metadata

  • Download URL: onnx-1.15.0.tar.gz
  • Upload date:
  • Size: 12.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0.tar.gz
Algorithm Hash digest
SHA256 b18461a7d38f286618ca2a6e78062a2a9c634ce498e631e708a8041b00094825
MD5 cd5c9270041f0c3541a7174cc21c3c73
BLAKE2b-256 f46e2b2963f9e3a7201c8c3a30656f9c81bc9d32d198a88a747456ab2874166a

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.15.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 60a3e28747e305cd2e766e6a53a0a6d952cf9e72005ec6023ce5e07666676a4e
MD5 66c017540d483e2989d82c0e2ea358bc
BLAKE2b-256 db2d0851d7bb5ae1d08cc27a0ccfba9e77e2393f47ea56e57d347e2926b6d316

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.15.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 17dcfb86a8c6bdc3971443c29b023dd9c90ff1d15d8baecee0747a6b7f74e650
MD5 6c97f7fbec1143bbee9996ebaef2897a
BLAKE2b-256 69f90c2cadcd490584bedf2e6d9f0adbbd99d941508a392e4e8e0375ad54b306

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8a7c94d2ebead8f739fdb70d1ce5a71726f4e17b3e5b8ad64455ea1b2801a85
MD5 de27ef0354b88188815c827eea09de2d
BLAKE2b-256 fe33a84bb5164f1462edd10d15516d5b12fee8a5e7d94b73829c7d32545cdc22

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f277d4861729f5253a51fa41ce91bfec1c4574ee41b5637056b43500917295ce
MD5 c8d67e576010d29fbb1afa18ab6e3e68
BLAKE2b-256 b1152f8d2b9014af6cf54203078b77ac703d61c5de4631bc51059ee1ac1ef37a

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 51fa79c9ea9af033638ec51f9177b8e76c55fad65bb83ea96ee88fafade18ee7
MD5 f328f15dfdd9c523a3d546483f5c84b3
BLAKE2b-256 5e2a412c59d08960cf2ce28e7373696069059033f1a732c535a8279e132bdad3

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 233ffdb5ca8cc2d960b10965a763910c0830b64b450376da59207f454701f343
MD5 6b703b0b42b69d4a7dd6a88cc4e908c0
BLAKE2b-256 0f2dbed0971e85ec14f861e8385c14dda06e643d37941860290f8c6f0aa060a6

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.15.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ca4ebc4f47109bfb12c8c9e83dd99ec5c9f07d2e5f05976356c6ccdce3552010
MD5 0a14e45b3e5c6626bf84d3d7638cbffe
BLAKE2b-256 1b436e84bf35a9201fb344b1a98edf7095c4fa1cf1478dfb6638d7b77f5475e6

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.15.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f1ad3d77fc2f4b4296f0ac2c8cadd8c1dcf765fc586b737462d3a0fe8f7c696a
MD5 ad5f75a10485accc6ba530cf44b07eb6
BLAKE2b-256 39a2589d346d64f8acbc15718b7adac68d71ae26ccea7b609a99b75f782574f0

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96ed899fe6000edc05bb2828863d3841cfddd5a7cf04c1a771f112e94de75d9f
MD5 02ad05668825bc89fe9cb56d1d0f91e2
BLAKE2b-256 e674522f651adbcd4b6d359b1a3e381185f8e1cd0ada8e9a97465a1990855dff

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 baf6ef6c93b3b843edb97a8d5b3d229a1301984f3f8dee859c29634d2083e6f9
MD5 539508e6b5621c101c43619198d56b78
BLAKE2b-256 9e1c56ad15911f52ce963786c855f91e54cc7c5c3db9c363cb2fb63ffe470354

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0aee26b6f7f7da7e840de75ad9195a77a147d0662c94eaa6483be13ba468ffc1
MD5 4e466257d50706e4b5902327ebe74b34
BLAKE2b-256 eba3bbcb2278986bfc7f07db844b48c589d0fc1b7b3273aef42954a9a10a4186

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 51cacb6aafba308aaf462252ced562111f6991cdc7bc57a6c554c3519453a8ff
MD5 5e362ec89a74dd3abf409d4c142a1c77
BLAKE2b-256 f7089d107e9cdc9080d9ca2e8833087988ed202c88b224c3263ec3edc4ea2504

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.15.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 95d7a3e2d79d371e272e39ae3f7547e0b116d0c7f774a4004e97febe6c93507f
MD5 986015391ecd2555eec3151833e340f8
BLAKE2b-256 b8d939382887c8fb4330a8372739a9534b6734c18012f18726f024d9cae40e96

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.15.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ef4d9eb44b111e69e4534f3233fc2c13d1e26920d24ae4359d513bd54694bc6d
MD5 74dcf7b7a34e83655498c8fc002ca631
BLAKE2b-256 73611c881c564378119735cfe183cc35ba855a3441c6ca43006b17c3b4cae891

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bf2de9bef64792e5b8080c678023ac7d2b9e05d79a3e17e92cf6a4a624831d2
MD5 797609f1682a359ae0366339b295d393
BLAKE2b-256 18be758ff7735e35c0ce84725c250a48b69c7cf38ddedcb598848b79c3038f3c

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f472bbe5cb670a0a4a4db08f41fde69b187a009d0cb628f964840d3f83524e9
MD5 45125ef21757951bb828f4697de901e1
BLAKE2b-256 42f29ed174e72a2a1df3ea07462a3cd8edbd440d609cd3081ce8c89eee4e5934

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9a9cfbb5e5d5d88f89d0dfc9df5fb858899db874e1d5ed21e76c481f3cafc90d
MD5 6205016b076cda5f5877a8f9719fe5a3
BLAKE2b-256 835a407650ee141f2313972d8112f4136cc380fbcd8a57bad6289dc6065c6498

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 b2d5e802837629fc9c86f19448d19dd04d206578328bce202aeb3d4bedab43c4
MD5 38a26a17f60fd98fcfd987ce39c2ad38
BLAKE2b-256 b8a2bb36f3aac8b2c38cbdd4ffbd3a124ec8aad882481251800b79c85151f698

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.15.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 763e55c26e8de3a2dce008d55ae81b27fa8fb4acbb01a29b9f3c01f200c4d676
MD5 5559bd0b1e40d4d239e84f1910aff580
BLAKE2b-256 98b7514a90cea77a4e80691f52e35c4486d31fe205771b9785f57535fb5e07c4

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.15.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for onnx-1.15.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1fdf8a3ff75abc2b32c83bf27fb7c18d6b976c9c537263fadd82b9560fe186fa
MD5 b17b3dab1036980eac07f101a7b881e0
BLAKE2b-256 7af28aec13f587da96b54ad8483d0c3888f8f79090e7ca827b710daf4f885e66

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49cebebd0020a4b12c1dd0909d426631212ef28606d7e4d49463d36abe7639ad
MD5 d03cc48ce1db5bf3c22f07a8a2ef0d3e
BLAKE2b-256 73dd590a5b3ec7f6b5d470bcb0d56612957b6ec6f13e8b439631c81446ff7848

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b2b0e7f3938f2d994c34616bfb8b4b1cebbc4a0398483344fe5e9f2fe95175e6
MD5 b95b06ef7adc4f4381222d94ddf342f6
BLAKE2b-256 c88d9457a8f2800195b3d41d51d0a9ce373a0adde84b61c228dfed550abbc6f4

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a4f774ff50092fe19bd8f46b2c9b27b1d30fbd700c22abde48a478142d464322
MD5 a185617864268d43117b144feb881edd
BLAKE2b-256 1216e59c62a0eb5ad590a77421dc124d04150b4c9663e1a79f3098a1efc5e855

See more details on using hashes here.

File details

Details for the file onnx-1.15.0-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.15.0-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 6b5c798d9e0907eaf319e3d3e7c89a2ed9a854bcb83da5fefb6d4c12d5e90721
MD5 6106b6fa3038d4704aa9f6b1f70866c6
BLAKE2b-256 22452384a5de3cfa605f1b384022e7da5a2ffb2f47f8e13fb43de0f39b7839de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page