Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version Build Status Build Status Build Status CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.16.0.tar.gz (12.3 MB view details)

Uploaded Source

Built Distributions

onnx-1.16.0-cp312-cp312-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

onnx-1.16.0-cp312-cp312-win32.whl (14.3 MB view details)

Uploaded CPython 3.12 Windows x86

onnx-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

onnx-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

onnx-1.16.0-cp312-cp312-macosx_10_15_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

onnx-1.16.0-cp312-cp312-macosx_10_15_universal2.whl (16.5 MB view details)

Uploaded CPython 3.12 macOS 10.15+ universal2 (ARM64, x86-64)

onnx-1.16.0-cp311-cp311-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.16.0-cp311-cp311-win32.whl (14.3 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.16.0-cp311-cp311-macosx_10_15_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

onnx-1.16.0-cp311-cp311-macosx_10_15_universal2.whl (16.5 MB view details)

Uploaded CPython 3.11 macOS 10.15+ universal2 (ARM64, x86-64)

onnx-1.16.0-cp310-cp310-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.16.0-cp310-cp310-win32.whl (14.3 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.16.0-cp310-cp310-macosx_10_15_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

onnx-1.16.0-cp310-cp310-macosx_10_15_universal2.whl (16.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ universal2 (ARM64, x86-64)

onnx-1.16.0-cp39-cp39-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.16.0-cp39-cp39-win32.whl (14.3 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.16.0-cp39-cp39-macosx_10_15_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

onnx-1.16.0-cp39-cp39-macosx_10_15_universal2.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ universal2 (ARM64, x86-64)

onnx-1.16.0-cp38-cp38-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.16.0-cp38-cp38-win32.whl (14.3 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.16.0-cp38-cp38-macosx_10_15_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

onnx-1.16.0-cp38-cp38-macosx_10_15_universal2.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.16.0.tar.gz.

File metadata

  • Download URL: onnx-1.16.0.tar.gz
  • Upload date:
  • Size: 12.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0.tar.gz
Algorithm Hash digest
SHA256 237c6987c6c59d9f44b6136f5819af79574f8d96a760a1fa843bede11f3822f7
MD5 01819ecdd031d1b0d7a11f6847b73641
BLAKE2b-256 b3fe0978403c8d710ece2f34006367e78de80410743fe0e7680c8f33f2dab20d

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3e0860fea94efde777e81a6f68f65761ed5e5f3adea2e050d7fbe373a9ae05b3
MD5 42c1e589a8328fefe3f87c5701ad9520
BLAKE2b-256 e9a18aecec497010ad34e7656408df1868d94483c5c56bc991f4088c06150896

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: onnx-1.16.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 62a2e27ae8ba5fc9b4a2620301446a517b5ffaaf8566611de7a7c2160f5bcf4c
MD5 b55f63bd13f20511db7eb8121f03eaa4
BLAKE2b-256 8ea4554a6e5741b42406c5b1970d04685d7f2012019d4178408ed4b3ec953033

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ddf14a3d32234f23e44abb73a755cb96a423fac7f004e8f046f36b10214151ee
MD5 835c0aa8521a3381fd9cd228943089f3
BLAKE2b-256 1171c219ce6d4b5205c77405af7f2de2511ad4eeffbfeb77a422151e893de0ea

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0efeb46985de08f0efe758cb54ad3457e821a05c2eaf5ba2ccb8cd1602c08084
MD5 bda6676501daf23e7c42592494fe525b
BLAKE2b-256 6d07f8fefd5eb0984be42ef677f0b7db7527edc4529224a34a3c31f7b12ec80d

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c392faeabd9283ee344ccb4b067d1fea9dfc614fa1f0de7c47589efd79e15e78
MD5 d1ae6e634d43dc8d9c56569f20179b08
BLAKE2b-256 e31b6e1ea37e081cc49a28f0e4d3830b4c8525081354cf9f5529c6c92268fc77

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp312-cp312-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp312-cp312-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 03a627488b1a9975d95d6a55582af3e14c7f3bb87444725b999935ddd271d352
MD5 6f0fb6968d80ac95c0fa15a6397b02c8
BLAKE2b-256 4287577adadda30ee08041e81ef02a331ca9d1a8df93a2e4c4c53ec56fbbc2ac

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7449241e70b847b9c3eb8dae622df8c1b456d11032a9d7e26e0ee8a698d5bf86
MD5 4910a352ec40b9c60354e35ea9d8e907
BLAKE2b-256 aad00514d02d2e84e7bb48a105877eae4065e54d7dabb60d0b60214fe2677346

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.16.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 81b4ee01bc554e8a2b11ac6439882508a5377a1c6b452acd69a1eebb83571117
MD5 cf938167c15ba3a88ab49563a8b03269
BLAKE2b-256 081b4bdf4534f5ff08973725ba5409f95bbf64e2789cd20be615880dae689973

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e60ca76ac24b65c25860d0f2d2cdd96d6320d062a01dd8ce87c5743603789b8
MD5 9b3c99c86c31e53efa998cb71eb024e0
BLAKE2b-256 df4863f68b65d041aedffab41eea930563ca52aab70dbaa7d4820501618c1a70

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77579e7c15b4df39d29465b216639a5f9b74026bdd9e4b6306cd19a32dcfe67c
MD5 e401a0f79b33c9ac0a41f3afd44ce5ef
BLAKE2b-256 801257187bab3f830a47fa65eafe4fbaef01dfdf5042cf82a41fa440fab68766

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5202559070afec5144332db216c20f2fff8323cf7f6512b0ca11b215eacc5bf3
MD5 53de479491812410cbed620fc4f4578f
BLAKE2b-256 cc24a328236b594d5fea23f70a3a8139e730cb43334f0b24693831c47c9064f0

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp311-cp311-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp311-cp311-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 f51179d4af3372b4f3800c558d204b592c61e4b4a18b8f61e0eea7f46211221a
MD5 e4606bf6a132f6e39271c8a8115956b9
BLAKE2b-256 a4b87accf3f93eee498711f0b7f07f6e93906e031622473e85ce9cd3578f6a92

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae0029f5e47bf70a1a62e7f88c80bca4ef39b844a89910039184221775df5e43
MD5 6830cb035f1db84c884ef4d5e021f4bf
BLAKE2b-256 3be2471ff83b3862967791d67f630000afce038756afbdf0665a3d767677c851

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.16.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 66300197b52beca08bc6262d43c103289c5d45fde43fb51922ed1eb83658cf0c
MD5 f1139825822dd1908bdd9a484ba87e48
BLAKE2b-256 cb14562e4ac22cdf41f4465e3b114ef1a9467d513eeff0b9c2285c2da5db6ed1

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 298f28a2b5ac09145fa958513d3d1e6b349ccf86a877dbdcccad57713fe360b3
MD5 25c2c0e4f6e34173e5f62c514e094dd2
BLAKE2b-256 495fd8e1a24247f506a77cbe22341c72ca91bea3b468c5d6bca2047d885ea3c6

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec22a43d74eb1f2303373e2fbe7fbcaa45fb225f4eb146edfed1356ada7a9aea
MD5 690d693cfc948c2c810677f1c3c71a5d
BLAKE2b-256 ef6e96be6692ebcd8da568084d753f386ce08efa1f99b216f346ee281edd6cc3

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 034ae21a2aaa2e9c14119a840d2926d213c27aad29e5e3edaa30145a745048e1
MD5 c2059f9d1c8fb0da400e00a6fed31429
BLAKE2b-256 b81c50310a559857951fc6e069cf5d89deebe34287997d1c5928bca435456f62

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 9eadbdce25b19d6216f426d6d99b8bc877a65ed92cbef9707751c6669190ba4f
MD5 153b3ab3ef4b889da65bacdf1a529e74
BLAKE2b-256 c80bf4705e4a3fa6fd0de971302fdae17ad176b024eca8c24360f0e37c00f9df

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d7886c05aa6d583ec42f6287678923c1e343afc4350e49d5b36a0023772ffa22
MD5 2a9235456697db56c06d63277082c24d
BLAKE2b-256 0645ad7485c677edb810dbfc2a8ab58941bcdc9b22e0fe7ad88cf595c41e50c5

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.16.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7532343dc5b8b5e7c3e3efa441a3100552f7600155c4db9120acd7574f64ffbf
MD5 a20257888588007ffa77e889cda3e010
BLAKE2b-256 c32bca8d5ad61036369d8f39062711bcb81642996ff50fe6470e41e9cc952f92

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7755cbd5f4e47952e37276ea5978a46fc8346684392315902b5ed4a719d87d06
MD5 e6c3eb929fa9f8aaf336d0d0effea6af
BLAKE2b-256 81add661a1fb8e79b9a22435dcf50813efff5c27593319c6ac504b28a090c5a5

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7fb29a9a692b522deef1f6b8f2145da62c0c43ea1ed5b4c0f66f827fdc28847d
MD5 fe20f4455d782769fc404ed6bc8b3f45
BLAKE2b-256 0a6b920014e3cd1ffcb445026df00fb6c333a396891a26ce9669c950d8e7cf14

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 30f02beaf081c7d9fa3a8c566a912fc4408e28fc33b1452d58f890851691d364
MD5 5f8ee05131c78e0093ce184cf86f5be6
BLAKE2b-256 bd5dd7861c32e9f0e2dca9942b8e03a03840818f12b7725e1fd1230025c21701

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp39-cp39-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp39-cp39-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 8cf3e518b1b1b960be542e7c62bed4e5219e04c85d540817b7027029537dec92
MD5 8c55d1da76aadf4588a112e777a324d0
BLAKE2b-256 c46dd01b2f61135d41fbf99e0462296f7d247d2c7ade8e7de5deee44e55eada3

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 209fe84995a28038e29ae8369edd35f33e0ef1ebc3bddbf6584629823469deb1
MD5 aa0461b00473995163d7ba900d9bf5ff
BLAKE2b-256 547fc773d89a5df228973ed937502374c9db28eb7159b1f9116cc63960dd98a7

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.16.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 257858cbcb2055284f09fa2ae2b1cfd64f5850367da388d6e7e7b05920a40c90
MD5 b7f82f7e6a6d37d1cee6d9c3362c6504
BLAKE2b-256 f893558b91de5389c108c9d5609dfa10c3cff417cc23206c60532eb330be66e9

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5752bbbd5717304a7643643dba383a2fb31e8eb0682f4e7b7d141206328a73b
MD5 85ece7ebd9ef06d40f1ab92a00b39b57
BLAKE2b-256 d1b157e725d3b1f41257c5d07ec35e1ff1d6f964d511f1ce72f489f6f074c768

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7665217c45a61eb44718c8e9349d2ad004efa0cb9fbc4be5c6d5e18b9fe12b52
MD5 5963499006abbaf934547861876a49ea
BLAKE2b-256 8962226c505def4516186c50337f7e5789854e666de25ba40e54acd9e6d1d15e

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 71839546b7f93be4fa807995b182ab4b4414c9dbf049fee11eaaced16fcf8df2
MD5 73b699685cc76b15474f5b0871e4799e
BLAKE2b-256 e6e5b8ba1dc51103d76c3eef72012e292abf0ab54aed38dd58c95b134db5d936

See more details on using hashes here.

File details

Details for the file onnx-1.16.0-cp38-cp38-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.0-cp38-cp38-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 70a90649318f3470985439ea078277c9fb2a2e6e2fd7c8f3f2b279402ad6c7e6
MD5 7c055dae8a2882a25c03859d8732bebc
BLAKE2b-256 4cb65c5030764c3e9448adeb2b0e2663a6f32da8104b76317340be1917590483

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page