Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version Build Status Build Status Build Status CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.16.1.tar.gz (12.3 MB view details)

Uploaded Source

Built Distributions

onnx-1.16.1-cp312-cp312-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

onnx-1.16.1-cp312-cp312-win32.whl (14.3 MB view details)

Uploaded CPython 3.12 Windows x86

onnx-1.16.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

onnx-1.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

onnx-1.16.1-cp312-cp312-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.1-cp311-cp311-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.16.1-cp311-cp311-win32.whl (14.3 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.16.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.16.1-cp311-cp311-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.1-cp310-cp310-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.16.1-cp310-cp310-win32.whl (14.3 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.16.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.16.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.16.1-cp310-cp310-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.1-cp39-cp39-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.16.1-cp39-cp39-win32.whl (14.3 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.16.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.16.1-cp39-cp39-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.1-cp38-cp38-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.16.1-cp38-cp38-win32.whl (14.3 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.16.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.16.1-cp38-cp38-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.16.1.tar.gz.

File metadata

  • Download URL: onnx-1.16.1.tar.gz
  • Upload date:
  • Size: 12.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1.tar.gz
Algorithm Hash digest
SHA256 8299193f0f2a3849bfc069641aa8e4f93696602da8d165632af8ee48ec7556b6
MD5 07fe47dc50e802e4a9051de9b3cdf928
BLAKE2b-256 74be242d02ebf7fe115bd695166eeea58b2206c9fa62de22cf9cbf8986fa8d27

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e69ad8c110d8c37d759cad019d498fdf3fd24e0bfaeb960e52fed0469a5d2974
MD5 81e75b9a298f7b6ae7d26b103650dc2e
BLAKE2b-256 855309fed1c26b53a0b07791badaea96ffc46734b2251fc0d651bfda1163c159

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: onnx-1.16.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2fde4dd5bc278b3fc8148f460bce8807b2874c66f48529df9444cdbc9ecf456b
MD5 8ddc27c0394897d5be3d14f47f4729da
BLAKE2b-256 80b82fe98bc5802e6cfe878acd8f2c5d193c081434aa27dc9ce34f157e1132d5

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 595b2830093f81361961295f7b0ebb6000423bcd04123d516d081c306002e387
MD5 b1d8031c395253fa5fd93d6427a8d32b
BLAKE2b-256 14a9bb3a9aedbdc6a5ab8423d3d246a8e6d14f527de0d992fefa55d5b23fd7f0

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8884bf53b552873c0c9b072cb8625e7d4e8f3cc0529191632d24e3de58a3b93a
MD5 0c02751c362717abe1dd1abb78097788
BLAKE2b-256 47568e87c498d6e8c9754a4d5ffe01e2a4b2a6ab68d7a2c657dc5bfa7560fb04

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 32e11d39bee04f927fab09f74c46cf76584094462311bab1aca9ccdae6ed3366
MD5 a72c4e5ec34f9ee98685ad7b6a8862b0
BLAKE2b-256 7e1b08d8dac6bfb4f3b9c323600549c14cc96fe9a3d0edbe492feead0572cedb

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 95aa20aa65a9035d7543e81713e8b0f611e213fc02171959ef4ee09311d1bf28
MD5 ef6f1967719edf4c46e83956e877b891
BLAKE2b-256 b288974de6816540a0e770e323425b0291784556063c7b0754bbbdbb86fb3716

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.16.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f98e275b4f46a617a9c527e60c02531eae03cf67a04c26db8a1c20acee539533
MD5 f5e040c09d077a4611ef0b5d6c615919
BLAKE2b-256 3dd38c4cae45801cf75dd0eeaf9171a55d360dbd9109fcd8910dd74c709ed01c

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45cf20421aeac03872bea5fd6ebf92abe15c4d1461a2572eb839add5059e2a09
MD5 37690bdfc563197a66558ab849b54187
BLAKE2b-256 e8e32eba2167d36a845af16255fe9c2a0a22a7034f3765109790cab91038c167

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1521ea7cd3497ecaf57d3b5e72d637ca5ebca632122a0806a9df99bedbeecdf8
MD5 2123ec80a4ee6bb9312d9f1357e65d2b
BLAKE2b-256 55f8fd7078f3c976209ff19e027eaabf1d1b0e35ffcdd48e37f9148767480bd1

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 006ba5059c85ce43e89a1486cc0276d0f1a8ec9c6efd1a9334fd3fa0f6e33b64
MD5 21dd99235aa98244cd03c77150e96782
BLAKE2b-256 17abcea6c47f05b51046f4e7b523b817a99c736f9569c60613b53c03f5fff355

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b3d10405706807ec2ef493b2a78519fa0264cf190363e89478585aac1179b596
MD5 3a28a7aa36ab01f0baa3b5b4a3d1d757
BLAKE2b-256 9c7c40fbebcb30f0fb6a773ca36e3a9dd4bdccd4b15455ef6c21a335781db78f

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.16.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c11e3b15eee46cd20767e505cc3ba97457ef5ac93c3e459cdfb77943ff8fe9a7
MD5 05e866a695558fff25dd73bdc35de0da
BLAKE2b-256 b74b4133ef16259384123389286afa2db8111495e8c93d3379c61e7491826047

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6251910e554f811fdd070164b0bc76d76b067b95576cb9dad4d52ae64fe014b5
MD5 21c99d40e07bd83252bb9a2e21809f7a
BLAKE2b-256 c67e5031717c0636e6074764a2f61a459a3ecd46c20d8b83a1f1cd2513a76160

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15abf94a7868eed6db15a8b5024ba570c891cae77ca4d0e7258dabdad76980df
MD5 c45dd51aabb199a3fdd43f60f72c9a2f
BLAKE2b-256 361607a819f1139a75e67b0b31e1474e5770d1e7c93b69744c6f7434415a9f65

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 bb2d392e5b7060082c2fb38eb5c44f67eb34ff5f0681bd6f45beff9abc6f7094
MD5 2a06d799afbd7ffd79c49010084f84f6
BLAKE2b-256 7dbf810fe3215735ff55a2b65d0430ba9782b70916d67554d9c2c58cebeace45

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1c059fea6229c44d2d39c8f6e2f2f0d676d587c97f4c854c86f3e7bc97e0b31c
MD5 c17d4789bce7f7e0058470ccad8c1274
BLAKE2b-256 9d1456a14765f9e544a511dbd8e6abfa42b7413a65fdd771a0e637811599023f

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.16.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 67f372db4fe8fe61e00b762af5b0833aa72b5baa37e7e2f47d8668964ebff411
MD5 00af1a713b03af06672b2ba755f26d06
BLAKE2b-256 59faaf73c5d1d542e5967bb0ebe48195c6cdf7367f7be5bfcbf96a6fb0aba4f1

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa7518d6d27f357261a4014079dec364cad6fef827d0b3fe1d3ff59939a68394
MD5 1fe407faed726c6431b28513400127b2
BLAKE2b-256 8f23ab9e0586873a9cba8d1127528255205620092c66d77203919c372f19dfe7

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5798414332534a41404a7ff83677d49ced01d70160e1541484cce647f2295051
MD5 2616407f06a1b4229cd2672ed9518904
BLAKE2b-256 6daaffdce5f0459849c401a2d3b37d35491e444a95e3127f93d2f044f16d8127

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 2bed6fe05905b073206cabbb4463c58050cf8d544192303c09927b229f93ac14
MD5 715a638fe3fb7ab085e33a2e87f49791
BLAKE2b-256 879803e94c62f835121a647e4516368acd3ae1ae7d1a83481f0475a2f5975555

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8c2b70d602acfb90056fbdc60ef26f4658f964591212a4e9dbbda922ff43061b
MD5 ccfb01bfe8ce627e6997f3b2e9ed6485
BLAKE2b-256 5c8d7efe8c1f489cab37d45e7676d8c371c67d404dcad9e3b22ed5499e3a9ffb

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.16.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for onnx-1.16.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 18b22143836838591f6551b089196e69f60c47fabce52b4b72b4cb37522645aa
MD5 f03672f2962fd4df3578969816c192d8
BLAKE2b-256 face8440fa53d00bf1f4ae0210551970e49456125eabd86d752a13dfd2408359

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f3faf239b48418b3ea6fe73bd4d86807b903d0b2ebd20b8b8c84f83741b0f18
MD5 5b52deaaf5c1cca7bf8a49e6c5ec2237
BLAKE2b-256 32d00b6d9a30bda9374355ae0254f2d192ed7b398b39c8dfe54014fb05709d7a

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 496ba17b16a74711081772e1b03f3207959972e351298e51abdc600051027a22
MD5 1d23e8a93daacb1790bfa6be95f5c010
BLAKE2b-256 1ab14e6822e70923107425fdadb032aa01fa61cf0abfbfa4a05029a660608bf6

See more details on using hashes here.

File details

Details for the file onnx-1.16.1-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.1-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 0fc189195a40b5862fb77d97410c89823197fe19c1088ce150444eec72f200c1
MD5 fefd25d9b88df570cc72ce37de4b2cfc
BLAKE2b-256 341bcc43f49c7f8a85f3c8049c4ad99994e62a08047d54af7fb828d1e7038a22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page