Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version Build Status Build Status Build Status CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.16.2.tar.gz (12.3 MB view details)

Uploaded Source

Built Distributions

onnx-1.16.2-cp312-cp312-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

onnx-1.16.2-cp312-cp312-win32.whl (14.3 MB view details)

Uploaded CPython 3.12 Windows x86

onnx-1.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

onnx-1.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

onnx-1.16.2-cp312-cp312-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.2-cp311-cp311-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.16.2-cp311-cp311-win32.whl (14.3 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.16.2-cp311-cp311-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.2-cp310-cp310-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.16.2-cp310-cp310-win32.whl (14.3 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.16.2-cp310-cp310-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.2-cp39-cp39-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.16.2-cp39-cp39-win32.whl (14.3 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.16.2-cp39-cp39-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

onnx-1.16.2-cp38-cp38-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.16.2-cp38-cp38-win32.whl (14.3 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.16.2-cp38-cp38-macosx_11_0_universal2.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.16.2.tar.gz.

File metadata

  • Download URL: onnx-1.16.2.tar.gz
  • Upload date:
  • Size: 12.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2.tar.gz
Algorithm Hash digest
SHA256 b33a282b038813c4b69e73ea65c2909768e8dd6cc10619b70632335daf094646
MD5 073482e5910d455020e85676cfb60e6c
BLAKE2b-256 d88309d7715612f72236b439eba6ebfecdaac59d99562dfc1d7a90dddb6168e1

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 080b19b0bd2b5536b4c61812464fe495758d6c9cfed3fdd3f20516e616212bee
MD5 9dff4f870c271d897cd148dc5b25f072
BLAKE2b-256 2b66121875d593a51ffd7a35315855c0e09ceca43c0bfe0e98af72053cc83682

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: onnx-1.16.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 324fe3551e91ffd74b43dbcf1d48e96579f4c1be2ff1224591ecd3ec6daa6139
MD5 296656d0bb06d38be15b17e0b7126c16
BLAKE2b-256 7654f909b428ab922cf9f3b1deec372173a0f4be313ae249b44c2db627a1f3e9

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca12e47965e590b63f31681c8c563c75449a04178f27eac1ff64bad314314fb3
MD5 290315aa9dd8340b60a521774a0ddef6
BLAKE2b-256 bb2a68851578adab1fd8abc4418c29f9944ad3d653452db76269c87f42ebe7e3

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b77a6c138f284dfc9b06fa370768aa4fd167efc49ff740e2158dd02eedde8d0
MD5 85a41cd4792652605c172727671703df
BLAKE2b-256 8f3d6d623912bd7262abba8f7d1b2930896c8ccc3e11eda668b27d28e43c7705

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 bfdb8c2eb4c92f55626376e00993db8fcc753da4b80babf28d99636af8dbae6b
MD5 51ff8b302d2f3c74b9d2c79dd4c3913d
BLAKE2b-256 8ca4bd05b4a952d07a12c42206ea67fe855e633bb455c6128e388f3d66b46a7e

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e66e4512a30df8916db5cf84f47d47b3250b9ab9a98d9cffe142c98c54598ba0
MD5 757dbd1048f92886107eda8d8521259f
BLAKE2b-256 41d36f18b81626b9bc7f53f85e766fb688026e803da4ff20160afd80172542e7

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.16.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e9f018b2e172efeea8c2473a51a825652767726374145d7cfdebdc7a27446fdd
MD5 9268b9010a47e47f022ad380fe83010a
BLAKE2b-256 de2074f04969a7d0112ce261e549a8b776bf0a262dc109c1e5e70b794ebecedb

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b98aa9733bd4b781eb931d33b4078ff2837e7d68062460726d6dd011f332bd4
MD5 85fd3ea26fa6b465d87f7f9f5113663a
BLAKE2b-256 0b8b443486985df06b2e934d1a833f44786f22af06f2ba144ec5ce61f63beb2e

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 39a57d196fe5d73861e70d9625674e6caf8ca13c5e9c740462cf530a07cd2e1c
MD5 aa757aea8aa8659cc4fdf9e8a40923fc
BLAKE2b-256 82fc04b03e31b6741c3b430d04cfa055660242eba800e15c1c3394db3082098d

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 859b41574243c9bfd0abce03c15c78a1f270cc03c7f99629b984daf7adfa5003
MD5 7248aef09ea392e5631fdb2b0439d300
BLAKE2b-256 ead0b6e02665c3e7ec097f194a75afc16698ce7729b810f0e67ac085a735f6e5

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4e496d301756e0a22fd2bdfac24b861c7b1ddbdd9ce7677b2a252c00c4c8f2a7
MD5 1b56e226642b4457c9e52551b45ed915
BLAKE2b-256 0ce41bc3ae56e6581587926a50a5c9dce3cfacf510e592e2512c7f5f2a9a4859

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.16.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 55fbaf38acd4cd8fdd0b4f36871fb596b075518d3e981acc893f2ab887d1891a
MD5 5bdd0248d93b4e655180555719373fc9
BLAKE2b-256 c7b90588350b9c779246a4f0302961e7b065c181fee70bb4a1219f13e4698fc1

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec6a425e59291fff430da4a884aa07a1d0cbb5dcd22cc78f6cf4ba5adb9f3367
MD5 9f1932feb18fdeb89ce68378ede658e0
BLAKE2b-256 f53dd28484e5d87d4500db0d3b44836d9cd31d88f1efbe168356dbb1dd4f2571

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a449122a49534bb9c2b6f16c8493b606ef0accda6b9dbf0c513ca4b31ebe8b38
MD5 0e518e5d4d725141f3eecede824b8dfc
BLAKE2b-256 c28f65582450430242811ec955806a870437a9d66f9dceccd53d05dd902d76ad

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 ab0a1aa6b0470020ea3636afdce3e2a67f856fefe4be8c73b20371b07fcde69c
MD5 038390a11ea0173625b563afbd8e26a6
BLAKE2b-256 490cf5b531a10344648ef577d0c3eca70fa40156928f1f927237eb6f107c74bb

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bfee781a59919e797f4dae380e63a0390ec01ce5c337a1459b992aac2f49a3c2
MD5 fac725e319fa42c105f50f783b8d4cb7
BLAKE2b-256 d42903f15191571fdef99d6e3f641e6385159d4bc826cdcad9b819b48fb30455

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.16.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0b765b09bdb01fa2338ea52483aa3d9c75e249f85446f0d9ad1dc5bd2b149082
MD5 b9ec2c7cad7fbd2c04908e825c4b3d0f
BLAKE2b-256 cb0d22769fa03571ce4e8fa23e359a91e24c38be5ca1192267878e627473b8a7

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da01d4a3bd7a0d0ee5084f65441fc9ca38450fc18835b7f9d5da5b9e7ca8b85d
MD5 1fad86134a4c8ad4347ad093ba5cd6f0
BLAKE2b-256 0bc2b7583750a65df9f47cd3ec6d16b92762807859d860d4c658ab205b978710

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d192db8501103fede9c1725861e65ed41efb65da1ce915ba969aae40073eb94
MD5 02c7cb798b9792176c65ae5d88046468
BLAKE2b-256 64fdf38042d1e807cc0c6fbd8663b8aef6f2a08d87ee71669ff6130e4e550b39

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 e79edba750ae06059d82d8ff8129a6488a7e692cd23cd7fe010f7ec7d6a14bad
MD5 ff85fd04a207d6ad5be0334451a70cf1
BLAKE2b-256 4e35abbf2fa3dbb96b430f6e810e3fb7bc042ed150f371cb1aedb47052c40f8e

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.16.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 42231a467e5be2974d426b410987073ed85bee34af7b50c93ab221a8696b0cfd
MD5 1dc55dddd75ae0f2beee0412e06aba72
BLAKE2b-256 992d21654195b4a17163dd6f9c3f553cb5aa4ef3c8ddb1a82fd0fade4a36890e

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.16.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for onnx-1.16.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e16012431643c66124eba0089acdad0df71d5c9d4e6bec4721999f9eecab72b7
MD5 003b43944b578cc35a0ad1c49d2fe36c
BLAKE2b-256 675469637645a562b08b0aa7a9ef893d716fb80efb10c17b3cb1101139c42ea9

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9e22be82c3447ba6d2fe851973a736a7013e97b398e8beb7a25fd2ad4df219e
MD5 2c2f803e8814b78d9f3426c6a7484196
BLAKE2b-256 caa6366248892aef34fa4c4e45098b4f10596240c9f67f84b82f6cb263f07033

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9635437ffe51cc71343f3067bc548a068bd287ac690f65a9f6223ea9dca441bf
MD5 14bbb68a10e93e87da7f0e434ff6fed5
BLAKE2b-256 ccf2339a79ac9092186c97f3888bb5516d2adc2a92bf96cc430f27d8af0704ef

See more details on using hashes here.

File details

Details for the file onnx-1.16.2-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.16.2-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c42a5db2db36fc46d3a93ab6aeff0f11abe10a4a16a85f2aad8879a58a898ee5
MD5 6a1b0cecfa037c98ce6f578b88bb9bc9
BLAKE2b-256 9091d33b3f554e8db8081440893c7f26d1ad68f4bc3fce5395ec86ed9d097894

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page